Answer: The wave can flip upside down.
Reflection is the bending of a wave when it cannot pass through. For example, plain mirrors which are flat, a ray of light hits the mirror and is reflected from the mirror since it cannot pass through
When reflection occurs the speed and frequency of the wave does not change but the wave is flipped upside down.
The speed does not change because speed is affected by the change in medium the frequency also remains the same since the energy of the wave does not change.
<span>3598 seconds
The orbital period of a satellite is
u=GM
p = sqrt((4*pi/u)*a^3)
Where
p = period
u = standard gravitational parameter which is GM (gravitational constant multiplied by planet mass). This is a much better figure to use than GM because we know u to a higher level of precision than we know either G or M. After all, we can calculate it from observations of satellites. To illustrate the difference, we know GM for Mars to within 7 significant figures. However, we only know G to within 4 digits.
a = semi-major axis of orbit.
Since we haven't been given u, but instead have been given the much more inferior value of M, let's calculate u from the gravitational constant and M. So
u = 6.674x10^-11 m^3/(kg s^2) * 6.485x10^23 kg = 4.3281x10^13 m^3/s^2
The semi-major axis of the orbit is the altitude of the satellite plus the radius of the planet. So
150000 m + 3.396x10^6 m = 3.546x10^6 m
Substitute the known values into the equation for the period. So
p = sqrt((4 * pi / u) * a^3)
p = sqrt((4 * 3.14159 / 4.3281x10^13 m^3/s^2) * (3.546x10^6 m)^3)
p = sqrt((12.56636 / 4.3281x10^13 m^3/s^2) * 4.458782x10^19 m^3)
p = sqrt(2.9034357x10^-13 s^2/m^3 * 4.458782x10^19 m^3)
p = sqrt(1.2945785x10^7 s^2)
p = 3598.025212 s
Rounding to 4 significant figures, gives us 3598 seconds.</span>
Answer:
Explanation:
T = 2π
(T / 2π)² = L/g
g = 4π²L/T²
g = 4π²(0.75000)/(1.7357)²
g = 9.82814766...
g = 9.8281 m/s²
Answer: mechanical energy
Explanation: I hope this helps! Also, please mark as brainliest, thanks!