Answer:
i) 24.5 m/s
ii) 30,656 m
iii) 89,344 m
Explanation:
Desde una altura de 120 m se deja caer un cuerpo. Calcule a 2.5 s i) la velocidad que toma; ii) cuánto ha disminuido; iii) cuánto queda por hacer
i) Los parámetros dados son;
Altura inicial, s = 120 m
El tiempo en caída libre = 2.5 s
De la ecuación de caída libre, tenemos;
v = u + gt
Dónde:
u = Velocidad inicial = 0 m / s
g = Aceleración debida a la gravedad = 9.81 m / s²
t = Tiempo de caída libre = 2.5 s
Por lo tanto;
v = 0 + 9.8 × 2.5 = 24.5 m / s
ii) El nivel que el cuerpo ha alcanzado en 2.5 segundos está dado por la relación
s = u · t + 1/2 · g · t²
= 0 × 2.5 + 1/2 × 9.81 × 2.5² = 30.656 m
iii) La altura restante = 120 - 30.656 = 89.344 m.
Based on the attached image:
- The name of the longitude line that passes through point A is the International Date Line
- The longitude 180° is experiencing solar noon because the rays of the sun are parallel to it.
- The longitude for 6 pm is 90° W, 12 midnight is 0°, and 6 am is 90° E
- Longitude 120° is B
- Solar time at Point B is 4 pm
- The location will correspond to any point on the same latitude as A
<h3>What are lines of longitude?</h3>
Lines of longitude are imaginary lines which run along the earth from the North pole. to the South pole.
Longitude lines divide the earth into semi-circles.
Longitude lines are known as meridians and each meridian measures one arc degree of longitude.
Considering the attached image:
- The name of the longitude line that passes through point A is the International Date Line
- The longitude 180° is experiencing solar noon because the rays of the sun are parallel to it.
- The longitude for 6 pm is 90° W, 12 midnight is 0°, and 6 am is 90° E
- Longitude 120° is B
- Solar time at Point B is 4 pm
- the location will correspond to any point on the same latitude as A
In conclusion, longitude lines are imaginary lines and run from North to South on the earth.
Learn more about lines of longitude at: brainly.com/question/1939015
#SPJ1
I found the answer for you if u need any help ask anytime!
Answer:
k = 1,250 N/m
Explanation:
Use the formula F=kx, with F=5N and x=0.04m
Then the spring constant (k) is 5/0.04