Answer:
a) 86 atm
b) 86 atm
c) 645 m/s
Explanation:
See attachment for calculations on how i arrived at the answer
Galileo Galilei is one of the key figures in the history of Science, being the first to apply the experimental-mathematical scientific method. He carried out experiments and careful observations in kinematics (his studies on the trajectory of projectiles are famous) and dynamics (it should be noted his careful experiments with inclined planes), establishing the first law of Dynamics (which Newton will later collect and refine in his Principles); and in Astronomy, with which he could unequivocally support the heliocentric theory.
His experiments were addressed by methodologies that allowed him to precisely find his mathematical calculations and to verify theories he was developing over time. His manuscripts were key to disseminate the applied method and extrapolate them to other scientific areas.
Therefore the correct answer is C.
Answer:
Approximately
(assuming that the acceleration due to gravity is
.)
Explanation:
Assuming that
the weight on this 72-kg skydiver would be
(points downwards.)
Air resistance is supposed to act in the opposite direction of the motion. Since this skydiver is moving downwards, the air resistance on the skydiver would point upwards.
Therefore, the net force on this skydiver should be the difference between the weight and the air resistance on the skydiver:
.
Apply Newton's Second Law of motion to find the acceleration of this skydiver:
.
Answer:
0 Kelvin
Explanation:
Atoms in absolute temperature get approximatelly motionless since 0 Kelvin is -273 degrees Celcius. The kinetic energy of atoms/particles in matter has the possible lowest value ( almost zero), so that there is nothing colder than 0 Kelvin.
Bumper of a stationary bumper car. The momentum of the
stationary car increases. Which happens to the momentum of the moving bumper
car? It decreases. It stays the same. It is converted to inertia.
Bumper of a stationary bumper car. The momentum of the
stationary car increases. The momentum of the moving bumper car It is converted
to inertia.