1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
masha68 [24]
2 years ago
10

What do Engineers aim to do

Engineering
2 answers:
Nesterboy [21]2 years ago
8 0

Answer:

Engineers design, evaluate, develop, test, modify, install, inspect and maintain a wide variety of products and systems.

Explanation:

because I said so

Basile [38]2 years ago
6 0

Answer:

Engineers design, evaluate, develop, test, modify, install, inspect and maintain a wide variety of products and systems.

Explanation:

You might be interested in
Examine a process whereby air at 300 K, 100 kPa is compressed in a piston/cylinder arrangement to 600 kPa. Assume the process is
professor190 [17]

Answer:

See attachment and explanation.

Explanation:

- The following question can be solved better with the help of a MATLAB program as follows. The code is given in the attachment.

- The plot of the graph is given in attachment.

- The code covers the entire spectrum of the poly-tropic range ( 1.2 - 1.6 ) and 20 steps ( cases ) have been plotted and compared in the attached plot.

3 0
3 years ago
A Rankine steam power plant is considered. Saturated water vapor enters a turbine at 8 MPa and exits at condenser at 10 kPa. The
Ray Of Light [21]

Answer:

0.31

126.23 kg/s

Explanation:

Given:-

- Fluid: Water

- Turbine: P3 = 8MPa , P4 = 10 KPa , nt = 85%

- Pump: Isentropic

- Net cycle-work output, Wnet = 100 MW

Find:-

- The thermal efficiency of the cycle

- The mass flow rate of steam

Solution:-

- The best way to deal with questions related to power cycles is to determine the process and write down the requisite properties of the fluid at each state.

First process: Isentropic compression by pump

       P1 = P4 = 10 KPa ( condenser and pump inlet is usually equal )

      h1 = h-P1 = 191.81 KJ/kg ( saturated liquid assumption )

       s1 = s-P1 = 0.6492 KJ/kg.K

       v1 = v-P1 = 0.001010 m^3 / kg

       

       P2 = P3 = 8 MPa( Boiler pressure - Turbine inlet )

       s2 = s1 = 0.6492 KJ/kg.K   .... ( compressed liquid )

- To determine the ( h2 ) at state point 2 : Pump exit. We need to determine the wok-done by pump on the water ( Wp ). So from work-done principle we have:

   

                           w_p = v_1*( P_2 - P_1 )\\\\w_p = 0.001010*( 8000 - 10 )\\\\w_p = 8.0699 \frac{KJ}{kg}

- From the following relation we can determine ( h2 ) as follows:

                          h2 = h1 + wp

                          h2 = 191.81 + 8.0699

                          h2 = 199.88 KJ/kg

                           

Second Process: Boiler supplies heat to the fluid and vaporize

- We have already evaluated the inlet fluid properties to the boiler ( pump exit property ).

- To determine the exit property of the fluid when the fluid is vaporized to steam in boiler ( super-heated phase ).

              P3 = 8 MPa

              T3 = ?  ( assume fluid exist in the saturated vapor phase )

              h3 = hg-P3 = 2758.7 KJ/kg

              s3 = sg-P3 = 5.7450 KJ/kg.K

- The amount of heat supplied by the boiler per kg of fluid to the water stream. ( qs ) is determined using the state points 2 and 3 as follows:

                          q_s = h_3 - h_2\\\\q_s = 2758.7 -199.88\\\\q_s = 2558.82 \frac{KJ}{kg}

Third Process: The expansion ( actual case ). Turbine isentropic efficiency ( nt ).

- The saturated vapor steam is expanded by the turbine to the condenser pressure. The turbine inlet pressure conditions are similar to the boiler conditions.

- Under the isentropic conditions the steam exits the turbine at the following conditions:

             P4 = 10 KPa

             s4 = s3 = 5.7450 KJ/kg.K ... ( liquid - vapor mixture phase )

             

- Compute the quality of the mixture at condenser inlet by the following relation:

                           x = \frac{s_4 - s_f}{s_f_g} \\\\x = \frac{5.745- 0.6492}{7.4996} \\\\x = 0.67947

- Determine the isentropic ( h4s ) at this state as follows:

                          h_4_s = h_f + x*h_f_g\\\\h_4_s = 191.81 + 0.67947*2392.1\\\\h_4_s = 1817.170187 \frac{KJ}{kg}        

- Since, we know that the turbine is not 100% isentropic. We will use the working efficiency and determine the actual ( h4 ) at the condenser inlet state:

                         h4 = h_3 - n_t*(h_3 - h_4_s ) \\\\h4 = 2758.7 - 0.85*(2758.7 - 181.170187 ) \\\\h4 = 1958.39965 \frac{KJ}{kg} \\

- We can now compute the work-produced ( wt ) due to the expansion of steam in turbine.

                        w_t = h_3 - h_4\\\\w_t = 2758.7-1958.39965\\\\w_t = 800.30034 \frac{KJ}{kg}

- The net power out-put from the plant is derived from the net work produced by the compression and expansion process in pump and turbine, respectively.

                       W_n_e_t = flow(m) * ( w_t - w_p )\\\\flow ( m ) = \frac{W_n_e_t}{w_t - w_p} \\\\flow ( m ) = \frac{100000}{800.30034-8.0699} \\\\flow ( m ) = 126.23 \frac{kg}{s}

Answer: The mass flow rate of the steam would be 126.23 kg/s

- The thermal efficiency of the cycle ( nth ) is defined as the ratio of net work produced by the cycle ( Wnet ) and the heat supplied by the boiler to the water ( Qs ):

                        n_t_h = \frac{W_n_e_t}{flow(m)*q_s} \\\\n_t_h = \frac{100000}{126.23*2558.82} \\\\n_t_h = 0.31

Answer: The thermal efficiency of the cycle is 0.31

       

   

7 0
3 years ago
Does a food market have any rooms in particular? Also whats units?
makkiz [27]

Answer:

to be or not to be

Explanation:

Vivi is a drummer for a band. She burns 756756756 calories while drumming for 333 hours. She burns the same number of calories each hour.

8 0
3 years ago
Read 2 more answers
A current vehicle registration expires at _____ of the first owner listed on the registration form
wariber [46]

Answer:

Midnight on the birthday. Hope this helps!

3 0
3 years ago
(SI units) Molten metal is poured into the pouring cup of a sand mold at a steady rate of 400 cm3/s. The molten metal overflows
maxonik [38]

Answer:

diameter of the sprue at the bottom is 1.603 cm

Explanation:

Given data;

Flow rate, Q = 400 cm³/s

cross section of sprue: Round

Diameter of sprue at the top d_{top} = 3.4 cm

Height of sprue, h = 20 cm = 0.2 m

acceleration due to gravity g = 9.81 m/s²

Calculate the velocity at the sprue base

V_{base} = √2gh

we substitute

V_{base} = √(2 × 9.81 m/s² × 0.2 m )

V_{base} = 1.98091 m/s

V_{base} = 198.091 cm/s

diameter of the sprue at the bottom will be;

Q = AV = (πd_{bottom}^2/4) × V_{base}

d_{bottom} = √(4Q/πV_{base})

we substitute our values into the equation;

d_{bottom} = √(4(400 cm³/s) / (π×198.091 cm/s))

d_{bottom}  = 1.603 cm

Therefore, diameter of the sprue at the bottom is 1.603 cm

6 0
3 years ago
Other questions:
  • Given the following MATLAB statement: ( 3 + 2 ) / 5 * 4 + 5 ^ 2 In what order will these operations be done?
    9·1 answer
  • 11.A heat engine operates between two reservoirs at 800 and 20°C. One-half of the work output of the heat engine is used to driv
    6·1 answer
  • Before you calculate the moment capacity for a steel beam, you have to determine the classification of beam.
    10·1 answer
  • Lately, you have noticed some repetitive stress in your wrist. Which sign is most likely the cause of that stress and pain?
    7·1 answer
  • Depreciation is.... *
    7·2 answers
  • What type of intersection is this?
    8·1 answer
  • Air enters a turbine with a stagnation pressure of 900 kPa and a stagnation temperature of 658K, and it is expanded to a stagnat
    9·1 answer
  • Can someone help me plz!!
    13·1 answer
  • Stress that acts in the plane of a cut section, rather than at right angles to the section is called:_______
    6·1 answer
  • Two solid yellow center lines on a two-lane highway indicate:
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!