Hi there!
We can begin by calculating the time the ball takes to reach the highest point of its trajectory, which can be found using the following:
Where:
tmax = (? sec)
vsinθ = vertical comp. of velocity = 10sin(48) = 7.43 m/s)
g = acceleration due to gravity (9.8 m/s²)
We can solve for this time:
When the ball is at the TOP of its trajectory, its VERTICAL velocity is equivalent to 0 m/s. Thus, we can consider this a free-fall situation.
We must begin by solving for the maximum height reached by the ball using the equation:
d = displacement (m)
vi = initial velocity (7.43 m/s)
a = acceleration due to gravity
d = displacement (m)
y0 = initial VERTICAL displacement (28m)
Plug in the values:
Now, we can use the rearranged kinematic equation:
Add the two times together: