Answer:
The mass number (represented by the letter A) is defined as the total number of protons and neutrons in an atom. Consider the element helium. Its atomic number is 2, so it has two protons in its nucleus.
The atomic mass of a single atom is simply its total mass and is typically expressed in atomic mass units or amu. By definition, an atom of carbon with six neutrons, carbon-12, has an atomic mass of 12 amu.
Onization energy is the energy required to lose an electron and form an ion. The stronger is the attraction of the atom and the electron the higher the ionization energy, and the weaker is the attraction of the atom and the electron the higher the ionization energy. This leads to a clear trend in the periodic table. Given that the larger the atom the weaker the attraction of the atom to the valence electrons, the easier they will be released, and the lower the ionization energy. This is, as you go downward in a group, the ionization energy decreases. So, the element at the top of the group will exhibit the largest ionization energy. <span>Therefore, the answer is that of the four elements of group 7A, fluorine will have the largest first ionization energy.</span>
The answer would be c it should be The right answer if I’m wrong I’ll fix it for you
Answer:
a. CO2 and H20
Explanation:
Chemically, this combustion process consists of a reaction between methane and oxygen in the air. When this reaction takes place, the result is carbon dioxide (CO2), water (H2O), and a great deal of energy. The following reaction represents the combustion of methane:
CH4[g] + 2 O2[g] -> CO2[g] + 2 H2O[g] + energy
One molecule of methane, (the [g] referred to above means it is gaseous form), combined with two oxygen molecules, react to form a carbon dioxide molecule, and two water molecules usually given off as steam or water vapor during the reaction and energy.