Now let’s say you’re on the Moon. If you were to drop a hammer and a feather from the same height, which would hit the ground first?
Trick Question! On the moon both objects would hit the ground at the same time. On Earth, the hammer lands first.
So yeah, the student is right. Galileo gave us this theory long ago.
Answer:
The maximum pressure that will be attained in the tank before the plug melts and releases gas should be less than 74.26 atm.
Explanation:
To calculate the final pressure of the system, we use the equation given by Gay-Lussac Law. This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial pressure and temperature of the gas.
are the final pressure and temperature of the gas.
We are given:

Putting values in above equation, we get:

The maximum pressure that will be attained in the tank before the plug melts and releases gas should be less than 74.26 atm.
Answer:
The the analysis for the free fall part should be done under the constant acceleration.
Explanation:
In the given problem, the jumper is falling under the free fall. Since, no external force is acting on the body therefore, the fall will be under the action gravity only. also, the acceleration due to gravity is always constant.
Therefore, the the analysis for the free fall part should be done under the constant acceleration.
Answer:
the vibrations push the purse up and down very fast and gravity pushes the purse down onto the floor
Explanation: does that help
Answer:
For the complete question provided in explanation, if the elevator moves upward, then the apparent weight will be 1035 N. While for downward motion the apparent weight will be 435 N.
Explanation:
The question is incomplete. The complete question contains a velocity graph provided in the attachment. This is the velocity graph for an elevator having a passenger of 75 kg.
From the slope of graph it is clear that acceleration at t = 1 sec is given as:
Acceleration = a = (4-0)m/s / (1-0)s = 4 m/s^2
Now, there are two cases:
1- Elevator moving up
2- Elevator moving down
For upward motion:
Apparent Weight = m(g + a)
Apparent Weight = (75 kg)(9.8 + 4)m/s^2
<u>Apparent Weight = 1035 N</u>
For downward motion:
Apparent Weight = m(g - a)
Apparent Weight = (75 kg)(9.8 - 4)m/s^2
<u>Apparent Weight = 435 N</u>