Answer:
direction
Explanation:
because particles surround the bell, so when the bell vibrates, it causes particles surrounding it to vibrate back and forth vigorously. as these particles vibrate they collide with the neighbouring particles, passing on the energy.
hope this is what you are asking, if not please report it so that someone else gets to try it.
Answer:
h= 46.66 m
Explanation:
Given that
Initial speed of the car ,u = 110 km/h
We know that
1 km/h= 0.277 m/s
u= 30.55 m/s
lets height gain by car is h.
The final speed of the car will be zero at height h.
v²=u²- 2 g h
v= 0 m/s
0²=30.55²- 2 x 10 x h ( g = 10 m/s²)
h= 46.66 m
Answer:
On the standing waves on a string, the first antinode is one-fourth of a wavelength away from the end. This means

This means that the relation between the wavelength and the length of the string is

By definition, this standing wave is at the third harmonic, n = 3.
Furthermore, the standing wave equation is as follows:

The bead is placed on x = 0.138 m. The maximum velocity is where the derivative of the velocity function equals to zero.


For this equation to be equal to zero, sin(59.94t) = 0. So,

This is the time when the velocity is maximum. So, the maximum velocity can be found by plugging this time into the velocity function:
