Answer:
Zero
Explanation:
Net force can be defined as the vector sum of all the forces acting on a body or an object i.e the sum of all forces acting simultaneously on a body or an object.
Mathematically, net force is given by the formula;
Where;
Fnet is the net force.
Fapp is the applied force.
Fg is the force due to gravitation.
In this scenario, a stalled car is being pushed up a hill at constant velocity by three people. Thus, the net force on the car is zero because all the forces acting on any physical object is equal to zero and represents a constant velocity; by balancing or cancelling each other out.
According to Sir Isaac Newton's First Law of Motion which is known as Law of Inertia, it states that an object or a physical body in motion will continue in its state of motion at continuous velocity (the same speed and direction) or, if at rest, will remain at rest unless acted upon by an external force.
Answer : The energy of one photon of hydrogen atom is, 
Explanation :
First we have to calculate the wavelength of hydrogen atom.
Using Rydberg's Equation:

Where,
= Wavelength of radiation
= Rydberg's Constant = 10973731.6 m⁻¹
= Higher energy level = 3
= Lower energy level = 2
Putting the values, in above equation, we get:


Now we have to calculate the energy.

where,
h = Planck's constant = 
c = speed of light = 
= wavelength = 
Putting the values, in this formula, we get:


Therefore, the energy of one photon of hydrogen atom is, 
Answer:Kinetic energy is the energy of motion. All moving objects have kinetic energy. When an object is in motion, it changes its position by moving in a direction: up, down, forward, or backward. 3. A force is a push or pull that causes an object to move, change direction, change speed, or stop.
Explanation: Not sure if that's what you meant but that's the answer I can give you.
Explanation:
It is given that,
A mass oscillates up and down on a vertical spring with an amplitude of 3 cm and a period of 2 s. It is a case of simple harmonic motion. If the amplitude of a wave is T seconds, then the distance cover by that object is 4 times the amplitude.
In 2 seconds, distance covered by the mass is 12 cm.
In 1 seconds, distance covered by the mass is 6 cm
So, in 16 seconds, distance covered by the mass is 96 cm
So, the distance covered by the mass in 16 seconds is 96 cm. Hence, this is the required solution.