Question: Self-test 3.12 Calculate the change in G for ice at -10°C, with density 917 kg mº, when the pressure is increased from
1.0 bar to 2.0 bar.
1 answer:
The change in the Gibb's free energy per mole (G) is 1.96 J.
The given parameters:
- Density of the ice, ρ = 917 kg/m³
- Initial pressure, P₁ = 1.0 bar
- Final pressure, P₂ = 2.0 bar
- Temperature, T = - 10 C
- Mass of water = 18 g
The change in the Gibb's free energy per mole (G) is calculated as follows;

where;
V is the volume of the ice

Change in pressure;

The change in the Gibb's free energy per mole (G);

Thus, the change in the Gibb's free energy per mole (G) is 1.96 J.
Learn more about Gibb's free energy here: brainly.com/question/10012881
You might be interested in
Answer:
A dissipates more power.
Explanation:
- In a series circuit, the current is the same at any point in it.
- The power dissipated in any resistor follows Joule's law, as follows:

- So, for a given current, the power is directly proportional to the resistance of the resistor.
- In this case, as resistor A has twice the resistance of resistor B, A dissipates twice more power than B.
It seems like the question is asking for the frequency.
Given:
Time period (T) = 2.4 sec
Frequency (f) =?
We know that the formula for frequency is:
Frequency (f) = 1/time period (T)
= 1 / 2.4 s
= 0.42 Hz. is the frequency for this problem.
By V=IR
A: 24=I*20
I = 1.2A
B: 220 = I*250
I = 0.88A
C: 6= I*3
I = 2 A
C,A,B
-- Since it's a cube, its length, width, and height are all the same 4 cm .
-- Its volume is (length x width x height) = 64 cm³ .
-- Density = (mass) / (volume)
= (176 g) / (64 cm³)
= 2.75 gm/cm³ .
Answer:
I'm not sure it is c I'm sure it is d