Explanation:
First, we will calculate the electric potential energy of two charges at a distance R as follows.
R = 2r
= 
= 0.2 m
where, R = separation between center's of both Q's. Hence, the potential energy will be calculated as follows.
U = 
= 
= 0.081 J
As, both the charges are coming towards each other with the same energy so there will occur equal sharing of electric potential energy between these two charges.
Therefore, when these charges touch each other then they used to posses maximum kinetic energy, that is,
.
Hence, K.E = 
= 
= 0.0405 J
Now, we will calculate the speed of balls as follows.
V = 
= 
= 0.142 m/s
Therefore, we can conclude that final speed of one of the balls is 0.142 m/s.
Answer:
12.3 m/s
Explanation:
The Doppler equation describes how sound frequency depends on relative velocities:
fr = fs (c + vr)/(c + vs),
where fr is the frequency heard by the receiver,
fs is the frequency emitted at the source,
c is the speed of sound,
vr is the velocity of the receiver,
and vs is the velocity of the source.
Note: vr is positive if the receiver is moving towards the source, negative if away.
Conversely, vs is positive if the receiver is moving away from the source, and negative if towards.
Given:
fs = 894 Hz
fr = 926 Hz
c = 343 m/s
vs = 0 m/s
Find: vr
926 = 894 (343 + vr) / (343 + 0)
vr = 12.3
The speed of the car is 12.3 m/s.
105 miles because you have to use the gif arable
Answer: They will NOT connect because like poles are facing each other, and like poles repel each other.