Answer:
4
Explanation:
Ionization energy can be defined as the energy required for an atom to lose its valence electron to form an ion. Hence, it deals with how easily an atom would lose its electron and form an ion. As the valence electrons are lossless bound to the outermost shell, they can easily be lost without much problem or better still they can be lost easily. Hence, the energy change here is small and thus we can conclude that the ionization energy here is low.
The electron affinity works quite differently from the ionization energy. It deals with the way in which a neutral atom attracts an electron to form an ion. For an electron with loose valence electrons, the sure fact is that it does not really need these electrons. Hence, there is no need for an high electron affinity on its part. Thus, we conclude that the electron affinity is also low
D) energy required to remove a valence electron
Explanation:
The ionization energy is the energy required to remove a valence electron from an element.
Different kinds of atoms bind their valence electrons with different amount of energy.
- To remove the electrons, energy must be supplied to the atom.
- The amount of energy required to remove the an electron in the valence shell is the ionization energy or ionization potential.
- The first ionization energy is the energy needed to remove the most loosely bound electron in an atom in the ground state.
- The ionization energy measures the readiness of an atom to loose electrons.
Learn more:
Ionization energy brainly.com/question/5880605
#learnwithBrainly
Answer:
Conduction, Convection, and Radiation
Explanation:
Kinetic energy is the energy a body possesses by being in motion. Kinetic energy takes place when the air inside the balloon gets exposed to heat. The hot air rises which will create and fill the shape of the balloon and allows it to move. Heat energy, also known as thermal energy occurs.
I don’t see any equal signs to make it an equation. Am I missing something?
Answer:
A) secondary amide
Explanation:
When carboxylic acid reacts with a primary amine, a condensation reaction takes place with the elimination of a water molecule .
For example, ethanol reacts with methylamine which is a primary amine gives N-Methylacetamide and a water molecule as:

The bond formed which is
O
||
-- C ---NH ---
is known as secondary amide group as only one hydrogen is attached to nitrogen atom in the amide bond.