Answer:
Explanation:
Time taken to accelerate to 28 m /s
= 28 / 2 = 14 s
a ) Total length of time in motion
= 14 + 41 + 5
= 60 s .
b )
Distance covered while accelerating
s = ut + 1/2 at²
= 0 + .5 x 2 x 14²
= 196 m .
Distance covered while moving in uniform motion
= 28 x 41
= 1148 m
distance covered while decelerating
v = u - at
0 = 28 - a x 5
a = 5.6 m / s²
v² = u² - 2 a s
0 = 28² - 2 x 5.6 x s
s = 28² / 2 x 5.6
= 70 m .
Total distance covered
= 196 + 1148 + 70
= 1414 m
total time taken = 60 s
average velocity
= 1414 / 60
= 23.56 m /s .
There are two laws named for Kirchhoff. The both concern electrical circuits.
Here they are in my own words:
1). The sum of the voltage drops around any closed loop in a circuit is zero.
2). The sum of the currents at any single point in a circuit is zero.
Because they are different they all show different traits.
Answer:
Given:
Thermal Kinetic Energy of an electron, 
= Boltzmann's constant
Temperature, T = 1800 K
Solution:
Now, to calculate the de-Broglie wavelength of the electron,
:

(1)
where
h = Planck's constant = 
= momentum of an electron
= velocity of an electron
= mass of electon
Now,
Kinetic energy of an electron = thermal kinetic energy



(2)
Using eqn (2) in (1):

Now, to calculate the de-Broglie wavelength of proton,
:

(3)
where
= mass of proton
= velocity of an proton
Now,
Kinetic energy of a proton = thermal kinetic energy



(4)
Using eqn (4) in (3):

Answer:
a. -6.17 rad
Explanation:
60 seconds is 2π radians. Writing a proportion:
2π / 60 = x / 59
x = 6.17
The displacement is negative because the second hand moves clockwise.