1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
I am Lyosha [343]
3 years ago
14

A child, hunting for his favorite wooden horse, is running on the ground around the edge of a stationary merry-go-round. The ang

ular speed of the child has a constant value of 0.233 rad/s. At the instant the child spots the horse, one-quarter of a turn away, the merry-go-round begins to move (in the direction the child is running) with a constant angular acceleration of 0.0136 rad/s2. What is the shortest time it takes for the child to catch up with the horse?
Physics
1 answer:
olga55 [171]3 years ago
6 0

Answer:

9.22 s

Explanation:

One-quarter of a turn away is 1/4 of 2π, or π/2 which is approximately 1.57 rad

Let t (seconds) be the time it takes for the child to catch up with the horse. We would have the following equation of motion for the child and the horse:

For the child: s_c = \omega_ct = 0.233t

For the horse: s_h = s_0 + a_ht^2/2 = 1.57 + 0.0136t^2/2 = 1.57 + 0.0068t^2

For the child to catch up with the horse, they must cover the same angular distance within the same time t:

s_c = s_h

0.233t = 1.57 + 0.0068t^2

0.0068t^2 - 0.233t + 1.57 = 0

t= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

t= \frac{0.233\pm \sqrt{(-0.233)^2 - 4*(0.0068)*(1.57)}}{2*(0.0068)}

t= \frac{0.233\pm0.11}{0.0136}

t = 25.05 or t = 9.22

Since we are looking for the shortest time we will pick t = 9.22 s

You might be interested in
Assume that a resistor is connected between the 150 V terminal and the common terminal. The voltmeter is then connected to an un
Lena [83]

Answer: 316.8V

Explanation:

given data:

metre moving current = 0.96mA

meters voltage = 288V

or  0.96*300V = 288V

<u><em>Solution:</em></u>

<u><em /></u>v1 = (0.96mA*150)<u><em /></u>

<u><em /></u>= 144V<u><em /></u>

<u><em /></u>

i1 = \frac{144v}{750}

= 0.192mA

i2 = imovement + i1

i2= 0.96mA+0.192mA

= 1.152mA

Vmeasured = 144V+(150)(1.152mA)

=316.8V

the unknown voltage is 316.8V

7 0
3 years ago
A 64 kg swimmer jumps, with a velocity of 4.2 m/s, off the front of a 25 kg kayak when the kayak is moving forward at a velocity
Crank

Answer:

3.88m/s

Explanation:

Using the law of conservation of momentum

m1u1+m2u2 = (m1+m2)v

m1 and m2 are the masses

u1 and 2 are the initial velocities

v is the final velocity

Given

m1 = 64kg

u1 = 4.2m/s

m2 = 25kg

u2 = 3.2m/s

Required

Final velocity v

Substitute the given values into the formula

64(4.2)+25(3.2) = (65+25)v

268.8+80 = 90v

348.8 = 90v

v = 348.8/90

v = 3.88m/s

Hence the velocity of the kayak after the swimmer jumps off is 3.88m/s

8 0
3 years ago
A man is using a fishing rod to catch fish in figure 1.
ryzh [129]

Answer:

Explanation:

Remark

In general, these 3rd class levers are very inefficient. Because the force distance is smaller than the load distance, you need to pull upward with more force that the weight of the load. So whatever the load is, the force is going to be much greater.

The distances are always measured to the pivot unless you are asked something specific otherwise.

Givens

F = ?

weight = 6N

Force Distance = F*d = 0.5 m

Weight Distance =W*d1 = 2 m

Formula

F*Fd = W*Wd

Solution

F*0.5 = 6 * 2            Divide by 0.5

F = 12/0.5

F = 24 N upwards

5 0
2 years ago
A snowball is rolling down a hill at 4.5 m/s and accumulating snow as it goes. Its diameter begins at 0.50 m and ends at the bot
Reil [10]
To find the change in centripetal acceleration, you should first look for the centripetal acceleration at the top of the hill and at the bottom of the hill.

The formula for centripetal acceleration is:
Centripetal Acceleration = v squared divided by r

where:
v = velocity, m/s
r= radium, m

assuming the velocity does not change:

at the top of the hill:
centripetal acceleration = (4.5 m/s^2) divided by 0.25 m
                                      = 81 m/s^2

at the bottom of the hill:
centripetal acceleration = (4.5 m/s^2) divided by 1.25 m
                                      = 16.2 m/s^2

to find the change in centripetal acceleration, take the difference of the two.
change in centripetal acceleration = centripetal acceleration at the top of the hill - centripetal acceleration at the bottom of the hill

= 81 m/s^2 - 16.2 m/s^2
= 64.8 m/s^2 or 65 m/s^2
6 0
3 years ago
If a source of sound waves is rapidly approaching a person, the sound heard by the person appears to have
velikii [3]

Correct answer choice is:

D. A frequency higher than the original frequency.

Explanation:

This is a true case of Doppler's effect. The Doppler effect can be defined as the effect originated by a traveling source of waves in which there is a visible higher variation in pulse for observers towards what the source is progressing and a visible descending shift in rate for observers from what the source is dropping.

8 0
3 years ago
Read 2 more answers
Other questions:
  • Could you guys tell me whether the photo represents a balanced or unbalanced equation​
    11·1 answer
  • If the change in enthalpy is -5074.3 kj, how much work is done during the combustion?
    7·1 answer
  • The car salesman tells you that the car can go from a stopped position to 60 miles per hour in 6 seconds. He is giving you the c
    9·2 answers
  • Use the data table and information below to answer the following questions.
    15·1 answer
  • If you are measuring how far a ball traveled in an experiment which example below could be an
    9·1 answer
  • TRICARE is health insurance for what part of the population?
    11·1 answer
  • A ball is thrown upward. At a height of 10 meters above the ground, the ball has a potential energy of 50 Joules (with the poten
    12·1 answer
  • Calculati rezistenta filamentului unui bec al lanternei de buzunar daca la tensiunea de 3,5 v el este parcurs de un curent cu in
    5·1 answer
  • 4. You run from your house to a friend's house that is 3 miles away. You then walk
    12·1 answer
  • What should you do if your brakes fail? Hook your shoe under the pedal and see if you can free it. Pull the steering wheel back.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!