Answer: 
Explanation:
given data:
metre moving current = 
meters voltage = 
or 
<u><em>Solution:</em></u>
<u><em /></u>
<u><em /></u>
<u><em /></u>
<u><em /></u>
<u><em /></u>







the unknown voltage is 316.8V
Answer:
3.88m/s
Explanation:
Using the law of conservation of momentum
m1u1+m2u2 = (m1+m2)v
m1 and m2 are the masses
u1 and 2 are the initial velocities
v is the final velocity
Given
m1 = 64kg
u1 = 4.2m/s
m2 = 25kg
u2 = 3.2m/s
Required
Final velocity v
Substitute the given values into the formula
64(4.2)+25(3.2) = (65+25)v
268.8+80 = 90v
348.8 = 90v
v = 348.8/90
v = 3.88m/s
Hence the velocity of the kayak after the swimmer jumps off is 3.88m/s
Answer:
Explanation:
Remark
In general, these 3rd class levers are very inefficient. Because the force distance is smaller than the load distance, you need to pull upward with more force that the weight of the load. So whatever the load is, the force is going to be much greater.
The distances are always measured to the pivot unless you are asked something specific otherwise.
Givens
F = ?
weight = 6N
Force Distance = F*d = 0.5 m
Weight Distance =W*d1 = 2 m
Formula
F*Fd = W*Wd
Solution
F*0.5 = 6 * 2 Divide by 0.5
F = 12/0.5
F = 24 N upwards
To find the change in centripetal acceleration, you should first look for the centripetal acceleration at the top of the hill and at the bottom of the hill.
The formula for centripetal acceleration is:
Centripetal Acceleration = v squared divided by r
where:
v = velocity, m/s
r= radium, m
assuming the velocity does not change:
at the top of the hill:
centripetal acceleration = (4.5 m/s^2) divided by 0.25 m
= 81 m/s^2
at the bottom of the hill:
centripetal acceleration = (4.5 m/s^2) divided by 1.25 m
= 16.2 m/s^2
to find the change in centripetal acceleration, take the difference of the two.
change in centripetal acceleration = centripetal acceleration at the top of the hill - centripetal acceleration at the bottom of the hill
= 81 m/s^2 - 16.2 m/s^2
= 64.8 m/s^2 or 65 m/s^2
Correct answer choice is:
D. A frequency higher than the original frequency.
Explanation:
This is a true case of Doppler's effect. The Doppler effect can be defined as the effect originated by a traveling source of waves in which there is a visible higher variation in pulse for observers towards what the source is progressing and a visible descending shift in rate for observers from what the source is dropping.