Answer: 250n
Explanation:
The formula for gravitational force is: F = (gMm)/r^2
There are two factors at play here:
1) The mass of the planet 'M'
2) The radius 'r'
We can ignore the small M and the g, they are constants that do not alter the outcome of this question.
You can see that both M and r are double that of earth. So lets say earth has M=1 and r=1. Then, new planet would have M=2 and r=2. Let's sub these two sets into the equation:
Earth. F = M/r^2 = 1/1
New planet. F = M/r^2 = 2/4 = 1/2
So you can see that the force on the new planet is half of that felt on Earth.
The question tells us that the force on earth is 500n for this person, so then on the new planet it would be half! So, 250n!
As the rocket is launched from the ground its height will go on increasing till it stops
So the height of rocket will be maximum when its speed becomes zero
so here we can use energy conservation theory




So it will reach upto height 7.35 m
<u>Answer</u>:
The stream flowing at a speed of 
<u>Explanation</u>:
Given:
Distance = 2km (both in upstream and downstream)
The speed in still water be x km/hr.
The speed in upstream = 4-x
Speed in downstream = 4+x
Solution:
We know that, Speed = distance/time
So, Time = distance/speed
Therefore,




By cancelling 2 on both sides,




Result:
Thus the speed of the stream is 
Answer:
a = 64 ft / s²
Explanation:
The force in a spring is given by Hooke's law
F = -k x
Let's use the initial data to calculate the spring constant
k = F / x
Reduscate to the English system
x = 3 in (1foot/12 in) =0.25 foot
k = 0.3 / 0.25
k = 1.2 lb / foot
Now we can use Newton's second law
F = ma
a = F / m
a = -k x / m
m = w / g
m = 0.3 / 32 = 0.009375
x= 6 in (1foot /12 in)= 0.5 foot
a = - 1.2 0.5 / 0.009375
a = 64 ft / s²
Answer:
thermal decomposition reaction
Explanation: