Answer:
Explanation:
magnetic field due to circular wire
= μ₀ i / 2r
i is current and r is radius of coil .
Magnetic fields due to inner coil
μ₀ x 20 / (2 x 9.5 x 10⁻²)
Magnetic field due to outer coil
= μ₀ x I / (2 x 19 x 10⁻²) , I is the current to be calculated
Total field
μ₀ x 20 /( 2 x 9.5 x 10⁻²) +μ₀ x I / (2 x 19 x 10⁻²) = 0
20 + I /2 = 0
I = - 40 A
Current required is 40 A , and it will be in opposite direction.
The synapse is actually the link between 2 neurons. Now when
an action potential contacts the synaptic knob of a neuron, the voltage-gate
calcium channels are unlocked, resulting in an influx of positively charged
calcium ions into the cell. This makes the vesicles containing
neurotransmitters, for example acetylcholine, to travel towards the
pre-synaptic membrane. When the vesicle arrives at the membrane, the contents
are released into the synaptic cleft by exocytosis. Neurotransmitters disperse
across the space, down to its concentration gradient, up until it reaches the
post-synaptic membrane, where it connects to the correct neuroreceptors. Connecting
to the neuroreceptors results in depolarisation in the post-syanaptic neuron as
voltage-gated sodium channels are also opened, and the positively charged
sodium ions travel into the cell. When adequate neurotransmitters bind to
neuroreceptors, the post-synaptic membrane overcame the threshold level of
depolarisation and an action potential is made and the impulse is transmitted.
Answer:
A. It must be zero
Explanation:
A spacecraft leaves the solar system at a velocity of 1,500 m/s. The net force on this spacecraft is zero. What can we say about the spacecraft's acceleration?
According to Newton's second law
Force = Mass × acceleration
If the net force is zero
0 = mass × acceleration
0 = ma
a = 0/m
a = 0m/s²
this shows that the acceleration will be zero If the net force is zero