"v0" means that there are no friction forces at that speed
<span>mgsinΘ = (mv0²/r)cosΘ → the variable m cancels </span>
<span>sinΘ/cosΘ = tanΘ = v0² / gr
</span><span>Θ = arctan(v0² / gr) </span>
<span>When v > v0, friction points downslope: </span>
<span>mgsinΘ + µ(mgcosΘ + (mv²/r)sinΘ) = (mv²/r)cosΘ → m cancels: </span>
<span>gsinΘ + µ(gcosΘ + (v²/r)sinΘ) = (v²/r)cosΘ </span>
<span>µ = ((v²/r)cosΘ - gsinΘ) / (gcosΘ + (v²/r)sinΘ) </span>
<span>where Θ is defined above. </span>
<span>When v > v0, friction points upslope: </span>
<span>mgsinΘ - µ(mgcosΘ + (mv²/r)sinΘ) = (mv²/r)cosΘ → m cancels: </span>
<span>gsinΘ - µ(gcosΘ + (v²/r)sinΘ) = (v²/r)cosΘ </span>
<span>µ = (gsinΘ - (v²/r)cosΘ) / (gcosΘ + (v²/r)sinΘ) </span>
<span>where Θ is defined above. </span>
This version of Einstein’s equation is often used directly to find what value? E = ∆mc2
Answer: This version of Einstein’s equation is often used directly to find the mass that is lost in a fusion reaction. Therefore the correct answer to this question is answer choice C).
I hope it helps, Regards.
Ernest Rutherford is the answer you are looking for my friend.
Answer:
Carbohydrates are divided into four types: monosaccharides, disaccharides, oligosaccharides, and polysaccharides. Monosaccharides consist of a simple sugar; that is, they have the chemical formula C 6 H 12 O 6. Disaccharides are two simple sugars. Oligosaccharides are three to six monosaccharide units, and polysaccharides are more than six.
Answer: a) 7.1 * 10^3 N; b) -880 N directed out of the curve.
Explanation: In order to solve this problem we have to use the Newton laws, then we have the following:
Pcos 15°-N=0
Psin15°-f= m*ac
from the first we obtain N, the normal force
N=750Kg*9.8* cos (15°)= 7.1 *10^3 N
Then to calculate the frictional force (f) we can use the second equation
f=P sin (15°) -m*ac where ac is the centripetal acceletarion which is equal to v^2/r
f= 750 *9.8 sin(15°)-750*(85*1000/3600)^2/150= -880 N