Answer:
62.5%
Step-by-step explanation:
can i have brainliest
Its depends on what you are working on
So we are given the system:

Written in matrix form we get:
![\left[\begin{array}{cc}2&4\\6&3\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c}8\\-3\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%264%5C%5C6%263%5Cend%7Barray%7D%5Cright%5D%20%0A%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%0A%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%5C%5C-3%5Cend%7Barray%7D%5Cright%5D%20)
We compute the solution like this:
![ \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{cc}2&4\\6&3\end{array}\right] ^{-1} \left[\begin{array}{c}8\\-3\end{array}\right] \\= \left[\begin{array}{cc}-3&4\\6&-2\end{array}\right] \left[\begin{array}{c}8\\-3\end{array}\right] \dfrac{1}{18}\\= \left[\begin{array}{c}2\\-3\end{array}\right]](https://tex.z-dn.net/?f=%20%0A%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%0A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%264%5C%5C6%263%5Cend%7Barray%7D%5Cright%5D%20%5E%7B-1%7D%0A%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%5C%5C-3%5Cend%7Barray%7D%5Cright%5D%20%20%5C%5C%3D%0A%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-3%264%5C%5C6%26-2%5Cend%7Barray%7D%5Cright%5D%0A%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%5C%5C-3%5Cend%7Barray%7D%5Cright%5D%20%5Cdfrac%7B1%7D%7B18%7D%5C%5C%3D%0A%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%5C%5C-3%5Cend%7Barray%7D%5Cright%5D)
The solution is :
Answer:
I would say D.) is the best choice in this situation, The amount of female children you have does not determine the Gender that your child will be, The kids have nothing to do with the situation, The Father and Mother are what determine the Gender.
Answer:
first blank = 10 (for table 1)
second blank = 30 (for table 2)
====================================================
Explanation:
You could use a calculator to determine the value of b, then compute b^x for that first box. But as the instructions state, we don't need to use one. Why is that? Because the tables provide enough information to fill in the blanks.
Table 1 shows x = 2.096 lead to some unknown y value. Meanwhile, table 2 has x = 10 lead to y = 2.096; note the 2.096 shows up again. The exponential and log functions are inverses of each other. They undo each other's operation. This is similar to how division undoes multiplication, and vice versa.
Going in reverse of table 2, we will conclude that 10 must go in the blank for table 1. Therefore, b^x = 10 when x = 2.096
------------
Similarly, we will have 30 in the blank for table 2. Table 1 shows x = 3.096 lead to y = 30. Table 2 is the reverse of that as it is the inverse.
Throughout either section, we didn't need to find the value of b.