B.
about the same as for humans
Explanation:
This is why most bacteria, during research in labs, are incubated at 37 degrees centigrade, about the same as human body temperature. In addition, harmful and beneficial bacteria thrive in the human body due to the favorable temperatures for growth and reproduction. To try and fight an infection, the body also tries to raise the body temperatures above the optimal for the bacteria growth (the reason one has a fever in case of infection).
Answer:

Explanation:
The I₂ is the common substance in the two equations.
(1) IO₃⁻ + 5I⁻ + 6H⁺ ⟶ 3I₂ + 3H₂O
{2) I₂ + 2S₂O₃²⁻ ⟶ 2I⁻ + S₄O₆²⁻
From Equation (1), the molar ratio of iodate to iodine is

From Equation (2), the molar ratio of iodine to thiosulfate is

Combining the two ratios, we get

Explanation:
hope it will help you Mark me as a brilliant