Answer:
Contributes to the membrane potential.
Explanation:
Sodium-potassium pump: In cellular physiology, a protein which is identified in many cells that helping in to maintain the higher concentration of potassium ions inside than that is in the surrounding medium and maintain the lower concentration of sodium ions inside than that of the surrounding medium.
This unbalanced charge transfer contributes in the separation of charge across the cell membrane. Sodium-potassium pump is known for important contributor to action potential which is produce by nerve cells.
Answer:- 21.4 grams of
are formed.
Solution:- The balanced equation is:

From this equation, lithium and nitrogen reacts in 6:1 mol ratio. Limiting reactant gives the theoretical yield of the product. We will calculate the grams of the product for the given grams of both the reactants and see which one of them gives the limited amount of the product. This limited amount of the product will be the theoretical yield.
The molar mass of Li is 6.94 gram per mol and for
It is 28.02 gram per mol. The molar mass of
is 34.83 gram per mol. The calculations for the grams of the product for given grams of both the reactants are shown below:

= 

= 
From above calculations, Li gives least amount of the product. So, 21.4 g of
are formed.
Answer:
O lowering the temperature of the system
I am sorry can you explain it more?
Answer:
VH2SO4 = 145.3 mL
Explanation:
Mw BaO2 = 169.33 g/mol
⇒ mol BaO2 = 53.5g * ( mol BaO2 / 169.33 g BaO2) = 0.545 mol BaO2
⇒according to the reaction:
mol BaO2 = mol H2SO4 = 0.545 mol
⇒ V H2SO4 = 0.545 mol H2SO4 * ( L H2SO4 / 3.75 mol H2SO4 )
⇒V H2SO4 = 0.1453 L (145.3 mL)