It is TRUE, Force is proportional to the product of the masses and inversely proportional to the square of the distance between them.
Answer:
128.21 m
Explanation:
The following data were obtained from the question:
Initial temperature (θ₁) = 4 °C
Final temperature (θ₂) = 43 °C
Change in length (ΔL) = 8.5 cm
Coefficient of linear expansion (α) = 17×10¯⁶ K¯¹)
Original length (L₁) =.?
The original length can be obtained as follow:
α = ΔL / L₁(θ₂ – θ₁)
17×10¯⁶ = 8.5 / L₁(43 – 4)
17×10¯⁶ = 8.5 / L₁(39)
17×10¯⁶ = 8.5 / 39L₁
Cross multiply
17×10¯⁶ × 39L₁ = 8.5
6.63×10¯⁴ L₁ = 8.5
Divide both side by 6.63×10¯⁴
L₁ = 8.5 / 6.63×10¯⁴
L₁ = 12820.51 cm
Finally, we shall convert 12820.51 cm to metre (m). This can be obtained as follow:
100 cm = 1 m
Therefore,
12820.51 cm = 12820.51 cm × 1 m / 100 cm
12820.51 cm = 128.21 m
Thus, the original length of the wire is 128.21 m
Answer:
The amount of time for the whole journey is 8 hours.
Explanation:
A truck covered 2/7 of a journey at an average speed of 40 mph. Representing 1 the total of the trip traveled, then the rest of the distance traveled is calculated as: 
So if the truck covered the remaining 200 miles at
, this means that
of the trip represents the 200 miles. So, to calculate the total distance traveled by the truck, you apply the following rule of three: if
of the route represents 200 miles, the integer 1 (which represents the total of the route), how many miles are they?

miles= 280
So the total distance traveled is 280 miles. Since speed is the relationship between the space traveled by an object and the time used for it (
), then if the average of the entire trip was 35 mph and the distance traveled 280 miles, the time is calculated as:

time= 8 h
<u><em>
The amount of time for the whole journey is 8 hours.</em></u>
<u><em /></u>
Answer:
The speed at the bottom of the driveway is3.67m/s.
Explanation:
Height,h= 5sin20°= 1.71m
Potential energy PE=mgh= 2000×9.8×1.71
PE= 33516J
KE= PE- Fk ×d
0.5mv^2= 33516 - (4000×5)
0.5×2000v^2= 33516 - 20000
1000v^2= 13516
v^2= 13516/1000
v =sqrt 13.516
v =3.67m/s
Answer:
a) During the reaction time, the car travels 21 m
b) After applying the brake, the car travels 48 m before coming to stop
Explanation:
The equation for the position of a straight movement with variable speed is as follows:
x = x0 + v0 t + 1/2 a t²
where
x: position at time t
v0: initial speed
a: acceleration
t: time
When the speed is constant (as before applying the brake), the equation would be:
x = x0 + v t
a)Before applying the brake, the car travels at constant speed. In 0.80 s the car will travel:
x = 0m + 26 m/s * 0.80 s = <u>21 m </u>
b) After applying the brake, the car has an acceleration of -7.0 m/s². Using the equation for velocity, we can calculate how much time it takes the car to stop (v = 0):
v = v0 + a* t
0 = 26 m/s + (-7.0 m/s²) * t
-26 m/s / - 7.0 m/s² = t
t = 3.7 s
With this time, we can calculate how far the car traveled during the deacceleration.
x = x0 +v0 t + 1/2 a t²
x = 0m + 26 m/s * 3.7 s - 1/2 * 7.0m/s² * (3.7 s)² = <u>48 m</u>