I think it’s the third option but I’m not entirely sure
Question 1:
(a) Sulfurous acid: H2SO3
Sulfuric acid: H2SO4
(b) Nitrous acid: H2NO2
Nitric acid: H2NO3
Question 2:
To calculate the pH, based on concentration of H+ ions, there is one formula:

So the pH of this solution is

(the solution is basic).
Answer:
140. J/g*K
Explanation:
To find the specific heat capacity, you need to use the following equation:
Q = mcΔT
In this equation,
-----> Q = energy/heat (J)
-----> m = mass (g)
-----> c = specific heat (J/mole*K)
-----> ΔT = change in temperature (K)
Before you can use the equation above, you need to (1) convert kg to grams, then (2) convert grams to moles (via molar mass), and then (3) convert Celsius to Kelvin. The final answer should have 3 significant figures.
1.11 kg C₄H₈O₂ x 1,000 = 1110 g
Molar Mass (C₄H₈O₂): 4(12.01 g/mol) + 8(1.008 g/mol) + 2(16.00 g/mol)
Molar Mass (C₄H₈O₂): 88.104 g/mol
1110 grams C₄H₈O₂ 1 mole
------------------------------ x ------------------------- = 12.6 moles C₄H₈O₂
88.104 grams
34.5 °C + 273 = 307.5 K
52.3 °C + 273 = 325.3 K
Q = mcΔT <----- Equation
3.14 x 10⁴ J = (12.6 moles)c(325.3 K - 307.5 K) <----- Insert values
3.14 x 10⁴ J = (12.6 moles)c(17.8) <----- Subtract
3.14 x 10⁴ J = (224.28)c <----- Multiply 12.6 and 17.8
140. = c <----- Divide both sides by 224.28
**this answer may be slightly off due to using different molar masses/Kelvin conversions**
Answer: b. the volume of water vapour increases
Explanation:
when there's an increase in concentration, the equilibrium favours the forward reaction, more product is produced, froward reaction is faster