Answer:
2HNO3 +Na2CO3 → CO2 + H2O + 2NaNO3
The mass of ore required is
21 700 t.
r = 750 cm
V =

=

= 1.767 × 10⁹ cm³
The density of lead is 11.34 g/cm³.
So mass of lead sphere = 1.767 × 10⁹ cm³ ×

= 2.004 ×10¹⁰ g
2.004 ×10¹⁰ g ×

= 2.004 × 10⁷ kg
2.004 × 10⁷ kg ×

= 2.004 × 10⁴ t
92.5% efficiency means 92.5 t Pb per 100 t of ore.
Mass of ore = 2.004 × 10⁴ t Pb ×

= 2.17 × 10⁴ t ore = 21 700 t ore
Answer:
Mass = 8.46 g
Explanation:
Given data:
Mass of water produced = ?
Mass of glucose = 20 g
Mass of oxygen = 15 g
Solution:
Chemical equation:
C₆H₁₂O₆ + 6O₂ → 6H₂O + 6CO₂
Number of moles of glucose:
Number of moles = mass/molar mass
Number of moles = 20 g/ 180.16 g/mol
Number of moles = 0.11 mol
Number of moles of oxygen:
Number of moles = mass/molar mass
Number of moles = 15 g/ 32 g/mol
Number of moles = 0.47 mol
now we will compare the moles of water with oxygen and glucose.
C₆H₁₂O₆ : H₂O
1 : 6
0.11 : 6/1×0.11 = 0.66
O₂ : H₂O
6 : 6
0.47 : 0.47
Less number of moles of water are produced by oxygen thus it will limit the yield of water and act as limiting reactant.
Mass of water produced:
Mass = number of moles × molar mass
Mass = 0.47 mol ×18 g/mol
Mass = 8.46 g
Proteins are made from long chains of smaller molecules called amino acids. These long chains are folded into particular shapes. This is important in relation to how antibodies and enzymes work.
Enzymes are biological catalysts. There are optimum temperatures and pH values at which their activity is greatest. Enzymes are also proteins. If the shape of an enzyme changes, it may no longer work (it is said to have been 'denatured'). maybe right?