Advantages include low costs and minimal labor.Water stays in the root zone, and foliage stays dry. Drawbacks to surface irrigation include potential overwatering and wasteful runoff.
Answer:
a) v = +/- 0.323 m/s
b) x = -0.080134 m
c) v = +/- 1.004 m/s
Explanation:
Given:
a = - (0.1 + sin(x/b))
b = 0.8
v = 1 m/s @ x = 0
Find:
(a) the velocity of the particle when x = -1 m
(b) the position where the velocity is maximum
(c) the maximum velocity.
Solution:
- We will compute the velocity by integrating a by dt.
a = v*dv / dx = - (0.1 + sin(x/0.8))
- Separate variables:
v*dv = - (0.1 + sin(x/0.8)) . dx
-Integrate from v = 1 m/s @ x = 0:
0.5(v^2) = - (0.1x - 0.8cos(x/0.8)) - 0.8 + 0.5
0.5v^2 = 0.8cos(x/0.8) - 0.1x - 0.3
- Evaluate @ x = -1
0.5v^2 = 0.8 cos(-1/0.8) + 0.1 -0.3
v = sqrt (0.104516)
v = +/- 0.323 m/s
- v = v_max when a = 0:
-0.1 = sin(x/0.8)
x = -0.8*0.1002
x = -0.080134 m
- Hence,
v^2 = 1.6 cos(-0.080134/0.8) -0.6 -0.2*-0.080134
v = sqrt (0.504)
v = +/- 1.004 m/s
Answer:
the rate of increase of radius is dR/dt = 0.804 m/hour = 80.4 cm/hour
Explanation:
the slick of oil can be modelled as a cylinder of radius R and thickness h, therefore the volume V is
V = πR² * h
thus
h = V / (πR²)
Considering that the volume of the slick remains constant, the rate of change of radius will be
dh/dt = V d[1/(πR²)]/dt
dh/dt = (V/π) (-2)/R³ *dR/dt
therefore
dR/dt = (-dh/dt)* (R³/2) * (π/V)
where dR/dt = rate of increase of the radius , (-dh/dt)= rate of decrease of thickness
when the radius is R=8 m , dR/dt is
dR/dt = (-dh/dt)* (R³/2) * (π/V) = 0.1 cm/hour *(8m)³/2 * π/1m³ *(1m/100 cm)= 0.804 m/hour = 80.4 cm/hour
Answer:
(a) Yes
(b) 102.8 ft
Explanation:
(a)First let convert mile per hour to feet per second
30 mph = 30 * 5280 / 3600 = 44 ft/s
The time it takes for this driver to decelerate comfortably to 0 speed is
t = v / a = 44 / 10 = 4.4 (s)
given that it also takes 1.5 seconds for the driver reaction, the total time she would need is 5.9 seconds. Therefore, if the yellow light was on for 4 seconds, that's not enough time and the dilemma zone would exist.
(b) At this rate the distance covered by the driver is
Since the intersection is only 60 feet wide, the dilemma zone must be
162.8 - 60 = 102.8 ft