1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tia_tia [17]
3 years ago
14

17

Engineering
1 answer:
timofeeve [1]3 years ago
6 0
A. The factor by which a machine multiplies a force
You might be interested in
Engineers need to be open-ended when dealing with their designs. Why?
melomori [17]
I think the answer would be A if its wrong I’m sorry
7 0
3 years ago
A four-cylinder, four-stroke internal combustion engine operates at 2800 RPM. The processes within each cylinder are modeled as
Ulleksa [173]

Answer:

1) 287760.4 Hp

2) 18410899.5 kPa

Explanation:

The parameters given are;

p₁ = 14.7 lbf/in² = 101325.9 Pa

v₁ = 0.0196 ft³ = 0.00055501 m³

T₁ = 80°F = 299.8167 K

k = 1.4

Assumptions;

1) Air standard conditions are appropriate

2) There are negligible potential and kinetic energy changes

3) The air behaves as an ideal gas and has constant specific heat capacities of temperature and pressure

1) Process 1 to 2

Isentropic compression

T₂/T₁ = (v₁/v₂)^(1.4 - 1) = 10^0.4

p₂/p₁ = (v₁/v₂)^(1.4)

p₂ = p₁×10^0.4 =  101325.9*10^0.4 = 254519.153 Pa

T₂ = 299.8167*10^0.4 = 753.106 K

p₃ = 1080 lbf/in² = 7,446,338 Pa

Stage 2 to 3 is a constant volume process

p₃/T₃ = p₂/T₂

7,446,338/T₃ =   254519.153/753.106

T₃ = 7,446,338/(254519.153/753.106) = 22033.24 K

T₃/T₄ = (v₁/v₂)^(1.4 - 1) = 10^0.4

T₄ = 22033.24/(10^0.4) = 8771.59 K

The heat supplied, Q₁ = cv(T₃ - T₂) = 0.718*(22033.24 -753.106) = 15279.14 kJ

The heat rejected = cv(T₄ - T₁) = 0.718*(8771.59 - 299.8167) = 6082.73 kJ

W(net) = The heat supplied - The heat rejected = (15279.14 - 6082.73) = 9196.41 kJ

The power = W(net) × RPM/2*1/60 = 9196.41 * 2800/2*1/60 = 214582.9 kW

The power by the engine = 214582.9 kW = 287760.4 Hp

2) The mean effective pressure, MEP  = W(net)/(v₁ - v₂)

v₁ = 0.00055501 m³

v₁/v₂ = 10

v₂ = v₁/10 = 0.00055501/10 = 0.000055501

MEP  = 9196.41/(0.00055501 -  0.000055501) = 18410899.5 kPa

4 0
3 years ago
Drag each item to show if it is an element or not an element.
Flauer [41]

Answer:

CARBON

Explanation:

HOPE THIS HELPS SORRY FOR CAPS

5 0
3 years ago
When an electron in a valence band is raised to a conduction band by sufficient light energy, semiconductors start conducting __
garri49 [273]

Answer:

This band gap also allows semiconductors to convert light into electricity in photovoltaic cells and to emit light as LEDs when made into certain types of diodes. Both these processes rely on the energy absorbed or released by electrons moving between the conduction and valence bands.

Explanation:

On the internet

4 0
2 years ago
A ball thrown vertically upward from the top of a building of 60ft with an initial velocity of vA=35 ft/s. Determine (a) how hig
Masteriza [31]

Answer:

A.) 62.5 ft

B.) 3.58 seconds

C.) 8.58 seconds

Explanation:

A.) Given that a ball is thrown vertically upward from the top of a building of 60ft with an initial velocity of vA=35 ft/s

To determine how high above the top of the building the ball will go before it stops at B, let us use the third equation of motion.

V^2 = U^2 - 2gH

Since the ball is going up, g will be negative. And at maximum height, V = 0

Substitute all the parameters into the formula

0 = 35^2 - 2 × 9.8 × H

19.6H = 1225

H = 1225/19.6

H = 62.5 ft

(B) The time tAB it takes to reach its maximum height will be achieved by using second equation of motion

H = Ut - 1/2gt^2

Substitutes all the parameters into the formula

62.5 = 35t - 1/2 × 9.8 × t^2

62.5 = 35t - 4.9t^2

4.9t^2 - 35t + 62.5 = 0

Let's use quadratic equations to find t

Divide all by 4.9

t^2 - 7.143t + 12.755 = 0

t^2 - 7.143t + 3.57^2 = - 12.755 + 3.57^2

( t - 3.57)^2 = 0.000102

( t - 3.57 ) = +/-( 0.01 )

t = 3.57 + 0.01

t = 3.58 seconds

Ignore the negative one.

(C) the total time tAC needed for it to reach the ground at C from the instant it is released.

When the object is falling back from B, the initial velocity = 0. And the height h will be 60 + 62.5 = 122.5 ft

Using equation 2 of equations of motion again.

h = 1/2gt^2

122.5 = 1/2 × 9.8 × t^2

122.5 = 4.9t^2

t^2 = 122.5/4.9

t^2 = 25

t = 5

Total time = 5 + 3.58 = 8.58 seconds

3 0
3 years ago
Other questions:
  • An alloy has a yield strength of 818 MPa and an elastic modulus of 104 GPa. Calculate the modulus of resilience for this alloy [
    13·1 answer
  • A rigid 10-L vessel initially contains a mixture of liquid and vapor water at 100 °C, with a quality factor of 0.123. The mixtur
    11·1 answer
  • The y-component of velocity for a certain 2-D flow field is given as u = 3xy + x2 . Determine the x-component of velocity if the
    12·1 answer
  • Which career related to architecture deals with the planning of entire cities and focuses on designing and arranging buildings,
    9·2 answers
  • An object is supported by a crane through a steel cable of 0.02m diameter. If the natural swinging of the equivalent pendulum is
    6·1 answer
  • How do you connect several springs to increase the equivalent stiffness? What is one example from industry or other real-life si
    7·1 answer
  • Who had launched the highest number of internet satellites as of March 2020?
    14·1 answer
  • Please help, Artificial Intelligence class test
    12·1 answer
  • Select the correct answer.
    11·1 answer
  • ​please how to drawing mechanical drawing after connecting the all parts thanks
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!