Answer:
ideal fluid follow Newtonian law
that is, shear stress is directly proportional to rate change of shear strain.
watch handwritten explanation
Answer:
Check the explanation
Explanation:
class LanguageHelper:
language=set()
#Constructor
def __init__(self, words):
for w in words:
self.language.add(w)
def __contains__(self,query):
return query in self.language
def getSuggestionns(self,query):
matches = []
for string in self.language:
if string.lower().startswith(query) or query.lower().startswith(string) or query.lower() in string.lower():
matches.append(string)
return matches
lh = LanguageHelper(["how","Hi","What","Hisa"])
print('how' in lh)
print(lh.getSuggestionns('hi'))
===========================================
OUTPUT:-
==================
True
['Hisa', 'Hi']
====
Answer:
The answer is "583.042533 MPa".
Explanation:
Solve the following for the real state strain 1:

Solve the following for the real stress and pressure for the stable.
![K=\frac{\sigma_{r1}}{[\In \frac{I_{il}}{I_{01}}]^n}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5Csigma_%7Br1%7D%7D%7B%5B%5CIn%20%5Cfrac%7BI_%7Bil%7D%7D%7BI_%7B01%7D%7D%5D%5En%7D)
Solve the following for the true state stress and stress2.

![=\frac{\sigma_{r1}}{[\In \frac{I_{il}}{I_{01}}]^n} \times [\In \frac{I_{i2}}{I_{02}}]^n\\\\=\frac{399 \ MPa}{[In \frac{54.4}{47.7}]^{0.2}} \times [In \frac{57.8}{47.7}]^{0.2}\\\\ =\frac{399 \ MPa}{[ In (1.14046122)]^{0.2}} \times [In (1.21174004)]^{0.2}\\\\ =\frac{399 \ MPa}{[ In (1.02663509)]} \times [In 1.03915873]\\\\=\frac{399 \ MPa}{0.0114161042} \times 0.0166818905\\\\= 399 \ MPa \times 1.46125948\\\\=583.042533\ \ MPa](https://tex.z-dn.net/?f=%3D%5Cfrac%7B%5Csigma_%7Br1%7D%7D%7B%5B%5CIn%20%5Cfrac%7BI_%7Bil%7D%7D%7BI_%7B01%7D%7D%5D%5En%7D%20%5Ctimes%20%5B%5CIn%20%5Cfrac%7BI_%7Bi2%7D%7D%7BI_%7B02%7D%7D%5D%5En%5C%5C%5C%5C%3D%5Cfrac%7B399%20%5C%20MPa%7D%7B%5BIn%20%5Cfrac%7B54.4%7D%7B47.7%7D%5D%5E%7B0.2%7D%7D%20%5Ctimes%20%5BIn%20%5Cfrac%7B57.8%7D%7B47.7%7D%5D%5E%7B0.2%7D%5C%5C%5C%5C%20%3D%5Cfrac%7B399%20%5C%20MPa%7D%7B%5B%20In%20%281.14046122%29%5D%5E%7B0.2%7D%7D%20%5Ctimes%20%5BIn%20%281.21174004%29%5D%5E%7B0.2%7D%5C%5C%5C%5C%20%3D%5Cfrac%7B399%20%5C%20MPa%7D%7B%5B%20In%20%281.02663509%29%5D%7D%20%5Ctimes%20%5BIn%201.03915873%5D%5C%5C%5C%5C%3D%5Cfrac%7B399%20%5C%20MPa%7D%7B0.0114161042%7D%20%5Ctimes%200.0166818905%5C%5C%5C%5C%3D%20399%20%5C%20MPa%20%5Ctimes%201.46125948%5C%5C%5C%5C%3D583.042533%5C%20%5C%20MPa)
Answer:
The speed of transverse wave will be 28.2842 m/sec
Explanation:
We have given length of the card = 75 cm = 0.75 m
Tension on the card = 320 N
Mass of the card = 120 gram = 0.12 kg
So linear density 
We have to find the speed of the transverse wave
Speed is given by 

So the speed of transverse wave will be 28.2842 m/sec