Flip-flops are normally used for all of the following applications, except logic gates.
<h3>What are Flip flops?</h3>
Flip flops are known to be tools that are used for counting. They come in different ranges.
Note that Flip flops are one that can be seen on counters, storage registers, and others and as such, Flip-flops are normally used for all of the following applications, except logic gates.
Learn more about Flip flops from
brainly.com/question/4237777
#SPJ1
Answer:
SELECT distinct VendorName FROM Vendors
WHERE VendorID IN (
SELECT VendorID FROM Invoices
)
Explanation:
Answer:
robotic technology
Explanation:
Innovation is nothing but the use of various things such as ideas, products, people to build up a solution for the benefit of the human. It can be any product or any solution which is new and can solve people's problems.
Innovation solution makes use of technology to provide and dispatch new solutions or services which is a combination of both technology and ideas.
One such example of an innovative solution we can see is the use of "Robots" in medical science or in any military operations or rescue operation.
Sometimes it is difficult for humans to do everything or go to everywhere. Thus scientist and engineers have developed many advance robots or machines using new ideas and technology to find solutions to these problems.
Using innovations and technologies, one can find solutions to many problems which is difficult for the peoples. Robots can be used in any surveillance operation or in places of radioactive surrounding where there is a danger of humans to get exposed to such threats. They are also used in medical sciences to operate and support the patient.
Answer:
The mechanical advantage is 3 to 1
Explanation:
A frictionless pulley with three support ropes carries equal tension on each of the ropes thus;
Tension in each pulley rope = T
Total tension in the 3 ropes = 3 × T = 3·T
Direction of the tension forces on each rope = Unidirectional
Total force provided by the 3 ropes = 3·T
Therefore, a force, T, applied at the end of the rope will result in a lifting force of 3·T
Hence, the mechanical advantage = 3·T to T which is presented as follows;

The mechanical advantage = 3 to 1.