Given Data: Diameter 'd' = 30 cm = 0.3 m Lifting Weight 'W' = mg = 2000*9.81 N = 19,620 N Calculations: Area of the lift 'A' = <span>pi\over4*d^2=pi\over4*0.3^2=0.07 m^2
Thank you for posting your question here at brainly. I hope the answer helps. </span>
The force acting on the ball are unbalanced. Reactionary momentum force (that originated as a result of the swing of the bat) is the most powerful.
Yes friction is acting on the ball. In course of journey it would slow the ball down and make it trace a parabolic path rather than straight path as intended by hitter.
Explanation:
As the hitter hits the ball, momentum of the bat due to swing (mass of the bat*velocity provided by the batsman swinging action of bat) gets transferred on the ball on its impact with the bat.
Since ball’s mass is quite small as compared to the bat, the velocity of the ball increases by the same factor by which the ball’s mass is lower than the bat’s mass. This velocity causes forward motion of the ball (of course in the direction of bat’s motion, here the batsman intends to send the ball straight away hence the ball would move straight).
Various forces on ball is-
- Reactionary momentum force -bat’s force (most powerful force)
- The frictional force of the air (opposing the motion of the ball through the air)
- Gravity force (pulling the ball down to the Earth)
As a combined effect of these force when all the force remains unbalanced, the ball moves away in the straight path under the impact of bats momentum which was most powerful of all.
Frictional force and Gravity force continue acting on the ball. While frictional forces decrease the ball velocity through the air, gravity force pulls it down thus deflecting its direction. Under the combined impact of declining bats momentum, friction force and gravity force, the ball traces a parabolic path (in accordance with the first law of motion from Newton)
The Winter...? I think...? Ya, it's the Winter. :)
<span>95 km/h = 26.39 m/s (95000m/3600 secs)
55 km/h = 15.28 m/s (55000m/3600 secs)
75 revolutions = 75 x 2pi = 471.23 radians
radius = 0.80/2 = 0.40m
v/r = omega (rad/s)
26.39/0.40 = 65.97 rad/s
15.28/0.40 = 38.20 rad/s
s/((vi + vf)/2) = t
471.23 /((65.97 + 38.20)/2) = 9.04 secs
(vf - vi)/t = a
(38.20 - 65.97)/9.04 = -3.0719
The angular acceleration of the tires = -3.0719 rad/s^2
Time is required for it to stop
(0 - 38.20)/ -3.0719 = 12.43 secs
How far does it go?
65.97 - 38.20 = 27.77 M</span>
Answer: D
Explanation:
Atomic weight is measured by adding the number of protons and neutrons in an atom's nucleus. Argon's atomic number is 18 while potassium's is 19. This means that Argon will always have 18 protons while potassium will always have 19 protons.
To make the numbers easier to work with, round each atomic weight. We'll say the atomic weight of potassium is 39 and the atomic weight of argon is 40. To see how many neutrons each one has, I can set up a simple equation for each using the following equation:
Atomic weight = protons + neutrons
Potassium:
39 = 19 + N --> N = 20
Argon:
40 = 18 + N --> N = 22
An atom is defined by the number of protons it has, but the number of neutrons can vary. We call these isotopes, or atoms with the same number of protons but a different number of neutrons. As the math shows, argon typically has more neutrons per atom than potassium does.