First convert celcius to Kelvin.
20 + 273 = 293K
31 + 273 = 304K
Now we can set up an equation based on the information we have.
V1 = 5
P1 = 365
T1 = 293
V2 = 5
P1 = x
T2 = 304
The equation be: 
Now just solve.
1825/293 = 5x/304
Cross multiply.
554800 = 1465x
Divide both sides by 1465
x = 378.7030717 which can then be rounded to 378.7 mmHg
Answer:
a
Explanation:
Because of their valence electron
Carbon, Silicon and germanium has 4 as their valence electron
The fomula is NH4 (1+)
There are only two elements N and H.
As per oxidation state rules, the most electronegative element will have a negative oxidation state and the other element will have a positive oxidation state.
N is more electronative than H, so H will have a positive oxidation state and nitrogen will have a negative oxidation state.
You can also use the rule that states the hydrogen mostly has 1+ oxidation state,except when it is bonded to metals.
In conclusion the oxidation state of H in NH4 (1+) is 1+.
Now you must know that the sum of the oxidations states equals the charge of the ion, which in this case is 1+.
That implies that 4* (1+) + x = 1+
=> x = (1+) - 4(+) = 3-
Answer: the oxidation state of N is 3-, that is the option b.
Answer:
Rate of reaction = -d[D] / 2dt = -d[E]/ 3dt = -d[F]/dt = d[G]/2dt = d[H]/dt
The concentration of H is increasing, half as fast as D decreases: 0.05 mol L–1.s–1
E decreseas 3/2 as fast as G increases = 0.30 M/s
Explanation:
Rate of reaction = -d[D] / 2dt = -d[E]/ 3dt = -d[F]/dt = d[G]/2dt = d[H]/dt
When the concentration of D is decreasing by 0.10 M/s, how fast is the concentration of H increasing:
Given data = d[D]/dt = 0.10 M/s
-d[D] / 2dt = d[H]/dt
d[H]/dt = 0.05 M/s
The concentration of H is increasing, half as fast as D decreases: 0.05 mol L–1.s–1
When the concentration of G is increasing by 0.20 M/s, how fast is the concentration of E decreasing:
d[G] / 2dt = -d[H]/3dt
E decreseas 3/2 as fast as G increases = 0.30 M/s
Answer:
See explanation
Explanation:
We can convert cyclohexanol to cyclohexene in the presence of a strong acid such as sulfuric acid catalyst in a test tube at 60 oC by heating up the mixture to about 80 oC. This is a dehydration reaction so water is removed to yield the alkene. A drying agent is used to remove any trace amount of water left in the system. This overall reaction is endothermic.
Also, the reverse is the case when we want to carry out the hydration of cyclohexene to yield cyclohexanol. The overall reaction is exothermic and involves the addition of more water to the alkene and then cooling down the system to about 40 oC.