The Nernst equation allows us to predict the cell potential for voltaic cells under conditions other than the standard conditions of 1M, 1 atm, 25°C. The effects of different temperatures and concentrations may be tracked in terms of the Gibbs energy change ΔG. This free energy change depends upon the temperature & concentrations according to ΔG = ΔG° + RTInQ where ΔG° is the free energy change under conditions and Q is the thermodynamic reaction quotient. The free energy change is related to the cell potential Ecell by ΔG= nFEcell
so for non-standard conditions
-nFEcell = -nFE°cell + RT InQ
or
Ecell = E°cell - RT/nF (InQ)
which is called Nernst equation.
Answer: I2 is the Oxidant; while the 2S2O3(-2) is the reductant.
Explanation:
An Oxidant is any substance that oxidizes, or receives electrons from, another; in so doing, it becomes reduced in oxidation number.
A Reductant thus exactly the opposite.
Note that the equation provided shows that Iodine (I2) received an electron to become NEGATIVELY CHARGED:
I2 --> 2I-.
The oxidation number reduced from 0 to -1.
In contrast, the oxidation number of 2S2O3(-2) increases from -4 to -2.
Thus, I2 is the Oxidant; while the 2S2O3(-2) is the reductant.
The dissolution of borax in water is a temperature dependent reaction. With the higher temperature, the salt dissolve quickly.
<h3>What is borax?</h3>
Borax is the hydrate salt of boric acid. It is white and widely used in cleaning and in laundry detergent.
Borax is a salt that will dissolve in water at almost any temperature, with the exception of steam and ice.
However, as with any salt, the higher the temperature, the faster the salt dissolves, so speed is dependent on temperature. It will dissolve in cold water, but it will take longer.
Thus, the dissolution of borax in water is a temperature dependent reaction.
Learn more about borax
brainly.com/question/14724418
#SPJ4