Answer:Phase changes require either the addition of heat energy (melting, evaporation, and sublimation) or subtraction of heat energy (condensation and freezing). ... Changing the amount of heat energy usually causes a temperature change.
Explanation:
<span>To calculate the number of moles of aluminum, sulfur, and oxygen atoms in 4.00 moles of aluminum sulfate, al2(so4)3. We will simply inspect the "number" of aluminum, sulfur, and oxygen atoms available per one mole of the compound. Here we have Al2(SO4)3, which means that for every mole of aluminum sulfate, there are 2 moles of aluminum, 3 (1 times 3) moles of sulfur, and 12 (4x3) moles of oxygen. Since we have four moles of Al2(SO4)3 given, we simply multiply 4 times the moles present per 1 mole of the compound. So we have 4x2 = 8 moles of Al, 4x3 = 12 moles of sulfur, and 4x12 = 48 moles of oxygen.
So the answer is:
8,12,48
</span>
Answer:
2Mg + O₂ ⟶ 2MgO
Explanation:
Step 1. Start with the most complicated-looking formula (O₂?).
Put a 1 in front of it.
Mg + 1O₂ ⟶ MgO
Step 2. Balance O.
We have fixed 2 O on the left. We need 2O on the right. Put a 2 in front of MgO.
Mg + 1O₂ ⟶ 2MgO
Step 3. Balance Mg.
We have fixed 2 Mg on the right-hand side. We need 2 Mg atoms on the left. Put a 2 in front of Mg.
2Mg + 1O₂ ⟶ 2MgO
Every formula now has a coefficient. The equation should be balanced. Let’s check.
<u>Atom</u> <u>On the left</u> <u>On the righ</u>t
Mg 2 2
O 2 2
All atoms are balanced.
The balanced equation is
2Mg + O₂ ⟶ 2MgO
Answer
is: 0.375 moles are present in 8.4 liters of nitrous oxide at stp.
V(N₂O) = 8.4 L.
V(N₂O) =
n(N₂O) · Vm.
Vm = 22,4 L/mol.<span>
n</span>(N₂O) = V(N₂O) ÷ Vm.
n(N₂O) = 8.4 L ÷ 22.4 L/mol.
n(N₂O) = 0.375 mol.<span>
Vm - molare volume on STP.</span>
I am sorry but do not listen to the link above it is a virus and it will be installed if you do stay safe and spread the word