Answer : The amount of heat evolved by a reaction is, 4.81 kJ
Explanation :
Heat released by the reaction = Heat absorbed by the calorimeter + Heat absorbed by the water
![q=[q_1+q_2]](https://tex.z-dn.net/?f=q%3D%5Bq_1%2Bq_2%5D)
![q=[c_1\times \Delta T+m_2\times c_2\times \Delta T]](https://tex.z-dn.net/?f=q%3D%5Bc_1%5Ctimes%20%5CDelta%20T%2Bm_2%5Ctimes%20c_2%5Ctimes%20%5CDelta%20T%5D)
where,
q = heat released by the reaction
= heat absorbed by the calorimeter
= heat absorbed by the water
= specific heat of calorimeter = 
= specific heat of water = 
= mass of water = 254 g
= change in temperature = 
Now put all the given values in the above formula, we get:
![q=[(783J/^oC\times -2.28^oC)+(254g\times 4.184J/g^oC\times -2.28^oC)]](https://tex.z-dn.net/?f=q%3D%5B%28783J%2F%5EoC%5Ctimes%20-2.28%5EoC%29%2B%28254g%5Ctimes%204.184J%2Fg%5EoC%5Ctimes%20-2.28%5EoC%29%5D)

Therefore, the amount of heat evolved by a reaction is, 4.81 kJ
Answer:
13 mol NO
Explanation:
Step 1: Write the balanced equation
4 NH₃(g) + 5 O₂(g) ⇒ 4 NO(g) + 6 H₂O(g)
Step 2: Establish the appropriate molar ratio
According to the balanced equation, the molar ratio of O₂ to NO is 5:4.
Step 3: Calculate the number of moles of O₂ needed to produce 16 moles of NO
We will use the previously established molar ratio.
16 mol O₂ × 4 mol NO/5 mol O₂ = 13 mol NO
3501.75
is the answer
i think
(your welcome)
Answer: 1. Dependent, Independent The dependent variable responds to the independent variable and goes on the Y-axis.
Explanation: The independent variable is controlled or manipulated by the experimenter. For example, someone's age might be an independent variable. Other factors (such as what they eat, how much they go to school, how much television they watch) aren't going to change a person's age.The dependent variable is what you are measuring. For example, a test score could be a dependent variable because it could change depending on several factors such as how much you studied, how much sleep you got the night before you took the test, or even how hungry you were when you took it.
How that helps. :)