Answer: 10 and 35 degrees
Explanation: Localizers width below 10 degree and 35 degree signal arc is unreliable and considered unusable for navigation and as a result, aircrafts may loose alignment
Answer:

Explanation:
As we know that initial speed of the fall of the stone is ZERO

also the acceleration due to gravity on Mars is g
so we have

now we have

now if the same is dropped for 4t seconds of time
then again we will use above equation



Answer:
Two times as much
Explanation:
The equation for gravitational force is: Fg = GMm/r^2 with G being the universal gravitational constant.
So to make things easier we'll set r equal to 1 since it's a constant as well as G.
Then we're left with Fg=Mm with M being the mass of the sun and m being the mass of the earth.
So if m is constant and supposedly equals 1 then Fg=M so Fg is proportional to M therefore if M doubles then Fg doubles.
Answer:
The astronaut's mass is 16 kg.
Explanation:
Mass can be defined as a measure of the amount of matter an object or a body comprises of. The standard unit of measurement of the mass of an object or a body is kilograms.
Irrespective of the location of an object or a body at a given moment in time, the mass (amount of matter that they're made up of) is constant. This ultimately implies that, whether you're in the moon, space, earth or any other place, your mass remains the same (constant).
Therefore, if an astronaut has a mass of 16 Kg on Earth, his mass on the moon and on the space station would remain the same, as his original mass of 16 Kg because mass is indestructible.
The kinetic energy at the bottom of the swing is also 918 J.
Assume the origin of the coordinate system to be at the lowest point of the pendulum's swing. A pendulum, when raised to the highest point has potential energy since it is raised to a height h above the origin. At the highest point, the pendulum's velocity becomes zero, hence it has no kinetic energy. Its energy at the highest point is wholly potential.
When the pendulum swings down from its highest position, it gains velocity. Hence a part of its potential energy begins to convert itself into kinetic energy. If no dissipative forces such as air resistance exist, then, the law of conservation of energy can be applied to the swing.
Under the action of conservative forces, the total mechanical energy of a system remains constant.This means that the sum of the potential and kinetic energies of a body remains constant.
When the pendulum reaches the lowest point of its swing, it is at the origin of the chosen coordinate system. Its vertical displacement from the origin is zero, hence its potential energy with respect to the origin is zero. Therefore the entire potential energy of 918 J should have been converted into kinetic energy, according to the law of conservation of energy.
Thus, the kinetic energy of the pendulum at the lowest point of its swing is equal to the potential energy it had at its highest point, which is equal to <u>918 J.</u>