I think you can google this because I really don’t know the answer I’m so sorry
According to the conservation of mechanical energy, the kinetic energy just before the ball strikes the ground is equal to the potential energy just before it fell.
Therefore, we can say KE = PE
We know that PE = m·g·h
Which means KE = m·g·h
We can solve for h:
h = KE / m·g
= 20 / (0.15 · 9.8)
= 13.6m
The correct answer is: the ball has fallen from a height of 13.6m.
Answer:
The x-component of the electric field at the origin = -11.74 N/C.
The y-component of the electric field at the origin = 97.41 N/C.
Explanation:
<u>Given:</u>
- Charge on first charged particle,

- Charge on the second charged particle,

- Position of the first charge =

- Position of the second charge =

The electric field at a point due to a charge
at a point
distance away is given by

where,
= Coulomb's constant, having value 
= position vector of the point where the electric field is to be found with respect to the position of the charge
.
= unit vector along
.
The electric field at the origin due to first charge is given by

is the position vector of the origin with respect to the position of the first charge.
Assuming,
are the units vectors along x and y axes respectively.

Using these values,

The electric field at the origin due to the second charge is given by

is the position vector of the origin with respect to the position of the second charge.

Using these values,

The net electric field at the origin due to both the charges is given by

Thus,
x-component of the electric field at the origin = -11.74 N/C.
y-component of the electric field at the origin = 97.41 N/C.
Answer:
9 terms. In carbon dioxide (CO2), there are two oxygen atoms for each carbon atom. Each oxygen atom forms a double bond with carbon, so the molecule is formed by two double bonds. Two double bonds means that the total number of electrons being shared in the molecule is.
Explanation:
Answer:
15193.62 m/s
Explanation:
t = Time taken = 6.5 hours
u = Initial velocity = 0 (Assumed)
m = Mass of rocket = 1380 kg
F = Thrust force = 896 N
v = Final velocity
a = Acceleration of the rocket
Force

Equation of motion

The velocity of the rocket after 6.5 hours of thrust is 15193.62 m/s