Answer:
60 Ohms
Explanation:
Ohms law states that the voltage in the circuit is directly proportional to the current through the circuit components and expressed as
V=IR
Where V is the voltage, I is current and R is resistance
Making R the subject of the formula then

Substituting 3.0V for V and 0.05 A for I then

Therefore, resistance is 60.0 Ohms
To solve this problem it is necessary to apply the concepts related to the Third Law of Kepler.
Kepler's third law tells us that the period is defined as

The given data are given with respect to known constants, for example the mass of the sun is

The radius between the earth and the sun is given by

From the mentioned star it is known that this is 8.2 time mass of sun and it is 6.2 times the distance between earth and the sun
Therefore:


Substituting in Kepler's third law:






Therefore the period of this star is 3.8years
Answer:
51.82
Explanation:
First of all, let's convert both vectors to cartesian coordinates:
Va = 36 < 53° = (36*cos(53), 36*sin(53))
Va = (21.67, 28.75)
Vb = 47 < 157° = (47*cos(157), 47*sin(157))
Vb = (-43.26, 18.36)
The sum of both vectors will be:
Va+Vb = (-21.59, 47.11) Now we will calculate the module of this vector:

They both flow in currents. Water has a pump that works like a battery and pipes that work like a circuit.
Since the two taped poles of the magnets labeled A and B attracts one to each other, we know that the two taped poles are oppsosite.
So, you can predict with total certainty that when she brings the taped end of the third magnet (magnet C) near each of the first two magntes, in one case they will attract each other and in the other case they will repele mutually.
You are certain of that because, since the taped poles of the first two magnets are opposite, the pole of the third magnet has to be equal to one of the two first taped poles and opposite to the other of the two firest taped poles.