Answer:
A) T.
Explanation:
Kepler's third law states that the orbital period (T) of a satellite is related with the radius (R) and the mass of the object (M) it orbits:
So the orbital period is independent of the mass of the satellite, that means no matter the mass every satellite at a radius R around the earth have an orbital period A.
Answer:Velocity = 6.325m/s
Directional angle= 18.43°
Explanation:
Using Right angle triangle
Let Velocity of ballon&hawk be VHB represent the height of the triangle.
Let Velocity of balloon angle ground be VBG represent adjacent of the triangle.
Let Velocity of hawk and ground BE VHG represent the hypothesis.
Theta = opp/Adj= VHB/VBG
using pythagorean
VHG= SQRT(VHB^2+VBG^2)
VHG= sqrt(2^2+6^2)
VHG= sqrt(4+36)
VHG= 6.325m/s
Tan theta= 2/6
Tan theta =0.3333
Tan^-1 0.3333=18.43°
Answer:
Here the source is moving away from the observer so frequency will be smaller than the actual frequency and since the speed is increasing so the frequency is decreasing with time so correct answer is
D) lower than the original pitch and decreasing as he falls.
Explanation:
As we know by the Doppler's effect of sound we have
so we will have

so here when source moves away from the observer with a some speed then the frequency of the sound observed by the observer is smaller than the actual frequency
Here we know that the speed of the source is increasing with time as the source is falling under gravity
So we can say that the pitch of the sound will decrease with time
Answer:
The answer is 13 however make sure if they ask for a certain measurement like meter answer it by saying 13 meters.
Explanation:
This basically turns into basic algebra if you know the formula for work. The formula for work is W=F*d
Here are the variables that you know 650J=50N*d so you need d.
All you do is divide 650J by 50N and you get a total of 13 (meters since I don't know what they want you to put it in).