Under the assumption that the tires do not change in volume, apply Gay-Lussac's law:
P/T = const.
P = pressure, T = temperature, the quotient of P/T must stay constant.
Initial P and T values:
P = 210kPa + 101.325kPa
P = 311.325kPa (add 101.325 to change gauge pressure to absolute pressure)
T = 25°C = 298.15K
Final P and T values:
P = ?, T = 0°C = 273.15K
Set the initial and final P/T values equal to each other and solve for the final P:
311.325/298.15 = P/273.15
P = 285.220kPa
Subtract 101.325kPa to find the final gauge pressure:
285.220kPa - 101.325kPa = 183.895271kPa
The final gauge pressure is 184kPa or 26.7psi.
Acceleration = velocity/ time
Acceleration = 0.7-0.3 /30= 0.01 m/s^2
Notice that velocity is calculated the final speed minus the initial !
Answer:
F = 592238.09 N
Explanation:
To find the mean force you first calculate the acceleration by using the following kinematic equation:

you do "a" the subject of the equation and replace the values of the other parameters:

next, the force, by using the second Newton law is:

hence, the force is 592238.09 N
- - - - - - - - - - - - - - - - - - - - - - - - - - -
TRANSLATION:
Para encontrar a força média, primeiro calcule a aceleração usando a seguinte equação cinemática:
você faz "a" o assunto da equação e substitui os valores dos outros parâmetros:
Em seguida, a força, usando a segunda lei de Newton, é:
portanto, a força é 592238.09 N
Answer:

Explanation:
Given:
Dielectric of the medium between the plates (k) = 6.56
Area of eac plate (A) = 0.0830 m²
Separation between the plates (d) = 1.95 mm = 0.00195 m [1 mm = 0.001 m]
Maximum electric field
= 202 kN/C = 202000 N/C [1 kN = 1000 N]
Permittivity of space (ε₀) = 8.854 × 10⁻¹² F/m
The maximum potential difference across the plates of the capacitor is given as:

Now, capacitance of the capacitor is given as:

The maximum energy stored in the capacitor is given as:

Therefore, the maximum energy that can be stored in the capacitor is 