Answer:
A mass of 10 kilograms lifted 10 meters in 5 seconds.
Explanation:
Power can be defined as the energy required to do work per unit time.
Mathematically, it is given by the formula;
But Energy = mgh
Substituting into the equation, we have

Given the following data;
Mass = 10kg
Height = 10m
Time = 5 seconds
We know that acceleration due to gravity is equal to 9.8 m/s²

Hence, a mass of 10 kilograms lifted 10 meters in 5 seconds would produce the most power.
Answer:
The tension is 
Explanation:
From the question we are told that
The total mass is 
The radius is 
The density of air is 
Generally the upward force acting on the balloon is mathematically represented as

=> 
=> 
Here V is the volume of the spherical helium filled balloon which is mathematically represented as

=> 
=> 
So


Answer:
v = 2.94 m/s
Explanation:
When the spring is compressed, its potential energy is equal to (1/2)kx^2, where k is the spring constant and x is the distance compressed. At this point there is no kinetic energy due to there being no movement, meaning the net energy in the system is (1/2)kx^2.
Once the spring leaves the system, it will be moving at a constant velocity v, if friction is ignored. At this time, its kinetic energy will be (1/2)mv^2. It won't have any spring potential energy, making the net energy (1/2)mv^2.
Because of the conservation of energy, these two values can be set equal to each other, since energy will not be gained or lost while the spring is decompressing. That means
(1/2)kx^2 = (1/2)mv^2
kx^2 = mv^2
v^2 = (kx^2)/m
v = sqrt((kx^2)/m)
v = x * sqrt(k/m)
v = 0.122 * sqrt(125/0.215) <--- units converted to m and kg
v = 2.94 m/s
Answer:
His weight would be 100 N
Explanation:
Answer:
240 m
120 m
Explanation:
d = Path difference = 120 m
For destructive interference
Path difference

The longest wavelength is 240 m
For constructive interference

The longest wavelength is 120 m