The greatest point for kinetic is at the bottom and in the middle it is in half and at the top it is at the highest in potential energy.
Answer:
Explanation:
If the initial velocity is U
Then the horizontal component of the velocity is
Ux= Ucosθ
Then the range for a projectile is give as
R=Ux.t
Where t is the time of flight
The time of flight is given as
t=2USinθ/g
Therefore,
R=Ux.t
R=UCosθ.2USinθ/g
R=U^2×2SinθCosθ/g
Then, from trigonometric ratio
2SinθCosθ= Sin2θ
R=U^2Sin2θ/g
Given that θ=32° and g=9.81m/s^2
Then
R=U^2Sin2×32/9.81
R=U^2Sin64/9.81
R=0.0916U^2
Then, range is given by R=0.0916U^2
A=0.0916U^2.
T
The box is at a distance A from the point of projection. Then the range R=A
R=0.0916U^2
A=0.0916U^2
Then,
U^2=A/0.0916
U^2=10.915A
Then the initial velocity should be
U=√10.915A
U=3.3√A
Answer:
377 m
Explanation:
number of turns, N = 65
θ = 36°
B1 = 200 micro Tesla
B2 = 600 micro tesla
t = 0.4 s
induced emf, e = 80 mV
Let a be the side of the square coil.



a = 1.45 m
Total length of the wire, L = N x 4a = 65 x 4 x 1.45 = 377 m
Thus, the length of the wire is 377 m.
Answer:
7.08 m/s²
Explanation:
Given:
v₀ = 20.0 m/s
v = 105 m/s
t = 12.0 s
Find: a
v = at + v₀
105 m/s = a (12.0 s) + 20.0 m/s
a = 7.08 m/s²
Answer:
it is a.health record documentation
Explanation:hope this helps