Answer:
A clinical thermometer is a thermometer used to measure human body temperature. Most made in the 20th century are mercury-in-glass thermometers. They are accurate and sensitive, having a narrow place where the mercury level rises very fast. A kink in the tube stops the mercury level from falling on its own.
Answer:
1.02mole
Explanation:
The reaction equation is given as:
2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂O
Given:
Mass of H₂SO₄ = 50g
Unknown:
Number of moles of NaOH = ?
Solution:
To solve this problem, we first find the number of moles of the acid given;
Number of moles =
Molar mass of H₂SO₄ = 2(1) + 32 + 4(16) = 98g/mol
Now;
Number of moles =
= 0.51mole
From the balanced reaction equation:
1 mole of H₂SO₄ will be neutralized by 2 mole of NaOH
0.51 mole of H₂SO₄ will be neutralized by 2 x 0.51 = 1.02mole of NaOH
Answer:
~Na+1 is already in the preferred form. Because of this, the second ionization energy of sodium is higher than normal. Mg+1 loses an electron to form s2 p6 .
<u> </u> The pH of 0.035 M aqueous aspirin is 2.48
<u>Explanation:</u>
We are given:
Concentration of aspirin = 0.035 M
The chemical equation for the dissociation of aspirin (acetylsalicylic acid) follows:

<u>Initial:</u> 0.035
<u>At eqllm:</u> 0.035-x x x
The expression of
for above equation follows:
![K_a=\frac{[C_9H_7O_4^-][H^+]}{[HC_9H_7O_4]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BC_9H_7O_4%5E-%5D%5BH%5E%2B%5D%7D%7B%5BHC_9H_7O_4%5D%7D)
We are given:

Putting values in above expression, we get:

Neglecting the value of x = -0.0037 because concentration cannot be negative
So, concentration of
= x = 0.0033 M
- To calculate the pH of the solution, we use the equation:
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
We are given:
= 0.0033 M
Putting values in above equation, we get:

Hence, the pH of 0.035 M aqueous aspirin is 2.48
Answer:
The density of the metal is 3.457 g/cm³.
Explanation:
Given,
mass of metal = 121 grams
Volume = 35 cm³.
Density = ?
Density of the metal can be found by using the formula
Density = Mass/Volume
Substituting the values,
Density = 121/35 = 3.457 g/cm³.