1.12 m/s is the velocity. You can get the velocity of a wave by multiplying the frequency and wavelength together. The product is the velocity.
Answer:
The coefficient of friction in the hall is 0.038
Explanation:
Given;
mass of the Parker, m = 73.2 kg
applied force on the parker, F = 123 N
frictional force, Fs = 27.4 N
the coefficient of friction in the hall = ?
frictional force is given by;
Fs = μN
Where;
μ is the coefficient of friction
N is normal reaction = mg
Fs = μmg
μ = Fs / mg
μ = (27.4) / (73.2 x 9.8)
μ = 0.038
Therefore, the coefficient of friction in the hall is 0.038
Answer:
omg i need help with the same answer lol
Explanation:
i wish i can help but i need help on this hehe
Distance of lake a is 200 km at 20 degree north of east
distance between lake a and b is 230 km at 30 degree west of north
now the distance between base and lake b is given as

given that




now the total distance is


now the magnitude of the distance is given as


also the direction is given as


<em>so it is 277.4 km at 74.7 degree North of East</em>
Answer:
Approximately
(assuming that the melting point of ice is
.)
Explanation:
Convert the unit of mass to kilograms, so as to match the unit of the specific heat capacity of ice and of water.

The energy required comes in three parts:
- Energy required to raise the temperature of that
of ice from
to
(the melting point of ice.) - Energy required to turn
of ice into water while temperature stayed constant. - Energy required to raise the temperature of that newly-formed
of water from
to
.
The following equation gives the amount of energy
required to raise the temperature of a sample of mass
and specific heat capacity
by
:
,
where
is the specific heat capacity of the material,
is the mass of the sample, and
is the change in the temperature of this sample.
For the first part of energy input,
whereas
. Calculate the change in the temperature:
.
Calculate the energy required to achieve that temperature change:
.
Similarly, for the third part of energy input,
whereas
. Calculate the change in the temperature:
.
Calculate the energy required to achieve that temperature change:
.
The second part of energy input requires a different equation. The energy
required to melt a sample of mass
and latent heat of fusion
is:
.
Apply this equation to find the size of the second part of energy input:
.
Find the sum of these three parts of energy:
.