Answer:
A bright and sunny day not worrying about work or school no family drama just a day you can relax and be yourself surrounded by the people you love.
hope this helps
have a good day :)
Explanation:
Answer:
The inducerd emf is 1.08 V
Solution:
As per the question:
Altitude of the satellite, H = 400 km
Length of the antenna, l = 1.76 m
Magnetic field, B = 
Now,
When a conducting rod moves in a uniform magnetic field linearly with velocity, v, then the potential difference due to its motion is given by:

Here, velocity v is perpendicular to the rod
Thus
e = lvB (1)
For the orbital velocity of the satellite at an altitude, H:

where
G = Gravitational constant
= mass of earth
= radius of earth

Using this value value in eqn (1):

Explanation:
It is given that,
Velocity of the particle moving in straight line is :

We need to find the distance (x) traveled by the particle during the first t seconds. It is given by :


Using by parts integration, we get the value of x as :

Hence, this is the required solution.
Answer:
The angle through which the wheel turned is 947.7 rad.
Explanation:
initial angular velocity,
= 33.3 rad/s
angular acceleration, α = 2.15 rad/s²
final angular velocity,
= 72 rad/s
angle the wheel turned, θ = ?
The angle through which the wheel turned can be calculated by applying the following kinematic equation;

Therefore, the angle through which the wheel turned is 947.7 rad.
Explanation:
If you want to get speed, u have to divided distance over time
The lowest speed will lose