The answer is in the picture.
Answer:
The light rays falling on a rough surface does follow the laws of reflection. The light rays are incident parallel on the rough surface but due to uneven surface the light rays are not reflected parallel rather they are reflected in different direction. Hence, no image is formed.
The units for G must be ![[N][m^2][kg^{-2}]](https://tex.z-dn.net/?f=%5BN%5D%5Bm%5E2%5D%5Bkg%5E%7B-2%7D%5D)
Explanation:
The magnitude of the gravitational force between two objects is given by:

where
F is the force
G is the gravitational constant
are the masses of the two objects
is the separation between the objects
We know that:
- The units of F are Newtons (N)
- The units of
are kilograms (kg) - The units of
are metres (m)
So, we can rewrite the equation in terms of G, to find its units:
![G=\frac{Fr^2}{m_1 m_2}=\frac{[N][m]^2}{[kg][kg]}=[N][m^2][kg^{-2}]](https://tex.z-dn.net/?f=G%3D%5Cfrac%7BFr%5E2%7D%7Bm_1%20m_2%7D%3D%5Cfrac%7B%5BN%5D%5Bm%5D%5E2%7D%7B%5Bkg%5D%5Bkg%5D%7D%3D%5BN%5D%5Bm%5E2%5D%5Bkg%5E%7B-2%7D%5D)
Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
Answer:
271.862 N/m
Explanation:
From Hook's Law,
mgh = 1/2ke²............... Equation 1
Where
m = mass of the ball, g = acceleration due to gravity, k = spring constant, e = extension, h = height fro which the ball was dropped.
Making k the subject of the equation,
k =2mgh/k²....................... Equation 2
Note: The potential energy of the ball is equal to the elastic potential energy of the spring.
Given: m = 60.3 g = 0.0603 kg, g = 9.8 m/s², e = 4.68317 cm = 0.0468317 m, h = 53.7 cm = 0.537 m
Substitute into equation 2
k = 2(0.0603)(9.8)(0.537)/0.048317²
k = 0.6346696/0.0023345
k = 271.862 N/m
Answer:
Distance, d = 192 meters
Explanation:
We have,
Initial velocity of an object is 10 m/s
Acceleration of the object is 3.5 m/s²
Time, t = 8 s
We need to find the distance travelled by the object during that time. Second equation of motion gives the distance travelled by the object. It is given by :


So, the distance travelled by the object is 192 meters.