Answer:
The index of refraction of this material is 1.7241
Explanation:
Recall that the index of refraction (n) of a medium is defined as the quotient between the speed of light in vacuum divided the speed of light in the medium whose index of refraction is being calculated. In mathematical terms:

Therefore, in our case, since we know the speed of light in the medium (
) and the speed of light in vacuum (
), we can estimate the index of refraction of the medium:

I believe it is D because if the mass is smaller then greater the acceleration for it to be equal force. Hope this helps! Sorry, if I'm wrong.
The answer will AB
It is able to do all blood types
Answer:
Final velocity of the first person is 3.43m/s and that of the second person is 0.0242m/s
Explanation:
Let the momentum of the first person, the ball second person be Ma, Mb and Mc.
From the principle of the conservation of momentum, sum of the momentum before collision is equal to the sum of the momentum after collision.
Ma1 + Mb1 = Ma2 + Mb2.
The ball and the first person are both moving together with a common velocity 3.45m/s.
Let the velocity of the first person be v1
Therefore
67.5×3.45+ 0.041×3.45= 67.5v1 + 0.041×34
233.02 = 1.39+ 67.5v1
67.5v1 = 233.02 - 1.39 = 231.61
v1 = 231.61 / 67.5
v1 = 3.43m/s
The second person and the ball move together with a common velocity after catching the ball.
For the second person and the ball let their final common velocity be v
Mb2 + Mc2 = Mb3 + Mc3
0.041 × 34 + 57.5 ×0 = (57.5 + 0.041)×v
57.541v = 1.39
v = 1.39 /57.541
v = 0.0242m/s
Hello,
Average speed is total distance divided by total time. From the problem, our total distance is given as 500 kilometers and given time is 5 hours. Therefore, the average speed is:

Therefore, the average speed is 100 km/h. Please let me know if you have any questions!