Answer:
Explanation:
In general, an increase in pressure (decrease in volume) favors the net reaction that decreases the total number of moles of gases, and a decrease in pressure (increase in volume) favors the net reaction that increases the total number of moles of gases.
Δn= b - a
Δn= moles of gaseous products - moles of gaseous reactants
Therefore, <u>after the increase in volume</u>:
- If Δn= −1 ⇒ there are more moles of gaseous reactants than gaseous products. The equilibrium will be shifted towards the products, that is, from left to right, and K>Q.
- If Δn= 0 ⇒ there is the same amount of gaseous moles, both in products and reactants. The system is at equilibrium and K=Q.
- Δn= +1 ⇒ there are more moles of gaseous products than gaseous reactants. The equilibrium will be shifted towards the reactants, that is, from right to left, and K<Q.
Answer:
3Mg(NO3)2(aq)+2Na3PO4(aq)⇒Mg3(PO4)2(s)+6NaNO3(aq)
Explanation:
Catenation is the property by which it can make bonds with other carbon<span> atoms to form long chains. Hence, </span>carbon<span>, with the least diffuse valence shell p orbital is capable of forming longer p-p sigma bonded chains of atoms than heavier elements which bond via higher valence shell orbitals.</span>
D i believe i’m sorry if i am wrong :)