Answer:
The temperature associated with this radiation is 0.014K.
Explanation:
If we assume that the astronomical object behaves as a black body, the relation between its <em>wavelength</em> and <em>temperature</em> is given by Wien's displacement law.

where,
λmax is the wavelength at the peak of emission
b is Wien's displacement constant (2.89×10⁻³ m⋅K)
T is the absolute temperature
For a wavelength of 21 cm,

Answer:
25 mph
Explanation:
So we have to find the unit rate, or you could use the DTS triangle, but both say you have to divide, so our equation is:
176 ÷ 7 = 25.14
But I'm going to round that
So the train is traveling at 25 mph
hope this helps:/
Answer:
110L
Explanation:
Boyle's Law states that P1×V1=P2×V2
Volume is indirectly proportional to Pressure so P×V is constant
P1=55atm
V1=6L
P2=3atm
V2 is to be found
P1×V1=P2×V2
6×55=3×V2
330=3×V2
Answer: V2=110L
Answer:
1.4 × 10² mL
Explanation:
There is some info missing. I looked at the question online.
<em>The air in a cylinder with a piston has a volume of 215 mL and a pressure of 625 mmHg. If the pressure inside the cylinder increases to 1.3 atm, what is the final volume, in milliliters, of the cylinder?</em>
Step 1: Given data
- Initial volume (V₁): 215 mL
- Initial pressure (P₁): 625 mmHg
- Final pressure (P₂): 1.3 atm
Step 2: Convert 625 mmHg to atm
We will use the conversion factor 1 atm = 760 mmHg.
625 mmHg × 1 atm/760 mmHg = 0.822 atm
Step 3: Calculate the final volume of the air
Assuming constant temperature and ideal behavior, we can calculate the final volume of the air using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁ / P₂
V₂ = 0.822 atm × 215 mL / 1.3 atm = 1.4 × 10² mL