Answer:
Inspectors use inductive reasoning on the job.
Explanation:
I just took the test.
OA bloom is smaller than a bar
Answer:
for i in range(0,10):
if SimonPattern[i] == UserPattern[i]:
score = score + 1
i = i + 1
else:
break
if i == 9:
score = score + 1
print("Total Score: {}".format(score))
Explanation:
This for loop was made using Python. Full code attached.
- For loop requires a range of numbers to define the end points. For this Simon Says game, we are talking about 10 characters, so that must be the range for the for loop: from 0 to 10.
- Conditional if tests if Simon pattern matches User's one characheter by one and add point for each match.
- Break statement is ready to escape the for loop at first mismatch.
- As we are starting from index 0, if the users matched all the characters correctly, then we need to add 1, otherwise the maximun score would be 9 and it should be 10.
A 260 ft (79.25m) length of size 4 AWG uncoated copper wire operating at a temperature of 75°c has a resistance of 0.0792 ohm.
Explanation:
From the given data the area of size 4 AWG of the code is 21.2 mm², then K is the Resistivity of the material at 75°c is taken as ( 0.0214 ohm mm²/m ).
To find the resistance of 260 ft (79.25 m) of size 4 AWG,
R= K * L/ A
K = 0.0214 ohm mm²/m
L = 79.25 m
A = 21.2 mm²
R = 0.0214 * 
= 0.0214 * 3.738
= 0.0792 ohm.
Thus the resistance of uncoated copper wire is 0.0792 ohm
Answer:
3.03 INCHES
Explanation:
According to ASTM D198 ;
Modulus of rupture = ( M / I ) * y ----- ( 1 )
M ( bending moment ) = R * length of span / 2
= (120 * 10^3 ) * 48 / 2 = 288 * 10^4 Ib-in
I ( moment of inertia ) = bd^3 / 12
= ( 2 )*( d )^3 / 12 = 2d^3 / 12
b = 2 in , d = ?
length of span = 4 * 12 = 48 inches
R = P / 2 = 240 * 10^3 / 2 = 120 * 10^3 Ib
y ( centroid distance ) = d / 2 inches
back to equation ( 1 )
( M / I ) * y
940.3 ksi = ( 288 * 10^4 / 2d^3 / 12 ) * d / 2
= ( 288 * 10^4 * 12 ) / 2d^3 ) * d / 2
940300 = 34560000* d / 4d^3
4d^3 ( 940300 ) = 34560000 d ( divide both sides with d )
4d^2 = 34560000 / 940300
d^2 = 9.188 ∴ Value of d ≈ 3.03 in