Newton's Laws<span>. </span>Kepler's Laws<span> are wonderful as a description of the </span>motions<span> of the </span>planets<span>. However, they provide no explanation of why the </span>planets<span> move in this way. Moreover, </span>Kepler's<span> Third </span>Law<span> only works for </span>planets<span> around the Sun and does not apply to the Moon's orbit around the Earth or the moons of Jupiter.
!!hope this helpful to you!!
please mark this a !!brainliest answer!!</span>
Answer:
a) The trajectory will be a helical path.
b) θ = 2*π rad
Explanation:
a) Since the initial velocity of the particle has a component parallel (x-component) to the magnetic field B
, the trajectory will be a helical path.
b) Given
t = 2*π*m/(q*B)
We can use the equation
θ = ω*Δt
where
θ is the angular displacement
ω is the angular speed, which is obtained as follows:
ω = q*B/m
then we have
θ = (q*B/m)*2*π*m/(q*B)
⇒ θ = 2*π rad
Your eyes are the most delicate thing on your body. Little things can make you go blind
<u>Answer
</u>
A. 1 and 2
<u>Explanation
</u>
At point 1 we have the highest potential energy and the kinetic energy is zero.
At 2 the potential energy is minimum and the kinetic energy is maximum.
The law of conservation of energy says that energy cannot be created nor destroyed. So, the change in P.E = Change in K.E.
P.E = height × gravity × mass. The height referred here is the perpendicular height. Gravity and mass are constant in this case.
From the diagram it can be seen clearly that the vertical height from 2 to 1 is much greater than from 4 to 3.
This shows that the change in P.E is greater between 1 and 2 and so is kinetic energy.