Answer:
Please refer to the figure.
Explanation:
The crucial point here is to calculate the enclosed current. If the current I is flowing through the whole cross-sectional area of the wire, the current density is

The current density is constant for different parts of the wire. This idea is similar to that of the density of a glass of water is equal to the density of a whole bucket of water.
So,

This enclosed current is now to be used in Ampere’s Law.

Here,
represents the circular path of radius r. So we can replace the integral with the circumference of the path,
.
As a result, the magnetic field is

Explanation:
Given that,
Terminal voltage = 3.200 V
Internal resistance 
(a). We need to calculate the current
Using rule of loop


Where, E = emf
R = resistance
r = internal resistance
Put the value into the formula


(b). We need to calculate the terminal voltage
Using formula of terminal voltage

Where, V = terminal voltage
I = current
r = internal resistance
Put the value into the formula


(c). We need to calculate the ratio of the terminal voltage of voltmeter equal to emf


Hence, This is the required solution.
1) they are attracting because if you look at the arrows they’re all pointing the same way.
2) if the magnet was turned around they would do the opposite and not attract ( this is called repulsion)
3) magnetic pole
4)magnet
5) magnetic force
6) magnetism
Hope this helps
Answer:
F = - k (x-xo) a graph of the weight or applied force against the elongation obtaining a line already proves Hooke's law.
Explanation:
The student wants to prove hooke's law which has the form
F = - k (x-xo)
To do this we hang the spring in a vertical position and mark the equilibrium position on a tape measure, to simplify the calculations we can make this point zero by placing our reference system in this position.
Now for a series of known masses let's get them one by one and measure the spring elongation, building a table of weight vs elongation,
we must be careful when hanging the weights so as not to create oscillations in the spring
we look for the mass of each weight
W = mg
m = W / g
and we write them in a new column, we make a graph of the weight or applied force against the elongation and it should give a straight line; the slope of this line is sought, which is the spring constant.
The fact of obtaining a line already proves Hooke's law.
Answer:
The value is
Explanation:
From the question we are told that
The mass of the car is
The acceleration is 
Generally the net force applied on the rope is mathematically represented as

Here W is the weight of the car which is evaluated as
=> 
=> 
Generally the net force can also be mathematically represented as
So

=> 
=>