According to the Law of Universal Gravitation, the gravitational force is directly proportional to the mass, and inversely proportional to the distance. In this problem, let's assume the celestial bodies to be restricted to the planets and the Sun. Since the distance is specified, the other factor would be the mass. Among all the celestial bodies, the Sun is the most massive. So, the Sun would cause the strongest gravitational pull to the satellite.
Answer:
THE FIRST ONE YOU SHOULD TELL HIM AND THE LAST ONE YOU SHOUDENT DO BECAUSE HE WILL DO IT AGAIN AND EXPECT OTHERS TO CLEAN UP AFTER HIM
Explanation:
Answer:
2.73414 seconds
467622.66798 J
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
g = Acceleration due to gravity = 9.81 m/s² = a



or

The time taken is 2.73414 seconds
The potential energy is given by

The change in potential energy is 467622.66798 J
Answer:
Newton's third law of motion states that for every action, there is equal and opposite reaction.
While space walking, when the astronaut gets detached from the space ship, she floats in space holding a wrench. In order to get back to the spaceship, she should throw the wrench in the opposite direction of the spaceship. This action would cause a reaction on her own body and she would be pushed away from the wrench and towards the spaceship. Thus, she can return back to the spaceship in this way.
<span>I'll tell you how to do it but you must crunch the numbers.
Use Kepler's 3rd Law
T^2 = k R^3
where k = 4(pi)^2/ GM
G =gravitational constant = 6.67300 × 10-11 m3 kg-1 s-2
M = mass of this new planet
pi = 3.14159265
T =3.09 days = 266976 seconds
R = (579,000,000km)/9 = 64333333.3 km
a)
Solve Kepler's 3rd Law for M. Your answer will be in kg
b)
mass of the sun = 1.98892 × 10^30 kilograms
Form the ratio
M(planet)/M(sun) </span>