Answer:
The upper limit on the flow rate = 39.46 ft³/hr
Explanation:
Using Ergun Equation to calculate the pressure drop across packed bed;
we have:
where;
L = length of the bed
= viscosity
U = superficial velocity
= void fraction
dp = equivalent spherical diameter of bed material (m)
= liquid density (kg/m³)
However, since U ∝ Q and all parameters are constant ; we can write our equation to be :
ΔP = AQ + BQ²
where;
ΔP = pressure drop
Q = flow rate
Given that:
9.6 = A12 + B12²
Then
12A + 144B = 9.6 -------------- equation (1)
24A + 576B = 24.1 --------------- equation (2)
Using elimination methos; from equation (1); we first multiply it by 2 and then subtract it from equation 2 afterwards ; So
288 B = 4.9
B = 0.017014
From equation (1)
12A + 144B = 9.6
12A + 144(0.017014) = 9.6
12 A = 9.6 - 144(0.017014)
A = 0.5958
Thus;
ΔP = AQ + BQ²
Given that ΔP = 50 psi
Then
50 = 0.5958 Q + 0.017014 Q²
Dividing by the smallest value and then rearranging to a form of quadratic equation; we have;
Q² + 35.02Q - 2938.8 = 0
Solving the quadratic equation and taking consideration of the positive value for the upper limit of the flow rate ;
Q = 39.46 ft³/hr
Answer:
Gases and particles in Earth's atmosphere scatter sunlight in all directions. Blue light is scattered more than other colors because it travels as shorter, smaller waves. This is why we see a blue sky most of the time.
Ways carbon is added to the atmosphere is through the respiration of animals, the decay of plant matter, combustion of organic materials, and volcanic eruptions.
Answer:
D. 803 lbs
Explanation:
In order to find the compressive stress on all three blocks we first need to find the normal surface area of each:
Surface Area of 1 Block = 3.5 x 3.5
Surface Area of 1 Block = 12.25
Surface Area of all 3 Blocks = A = 3 x 12.25
Area = 36.75
Now, the stress is given by the following formula:
Stress = Force/Area
Stress = 29500 lbs/36.75
Stress = 802.72 lbs
Hence, the correct option will be:
<u>D. 803 lbs</u>