1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Taya2010 [7]
3 years ago
7

Identify areas where winds are weak

Physics
1 answer:
tiny-mole [99]3 years ago
6 0
Winds are weak in High Pressure area's
You might be interested in
You are wearing earbuds or headphones to listen to your music but your family members can hear it as well. They tell you that it
allsm [11]

If it’s loud enough for your family to hear it, it’s best you turn it down. It could cause permanent damage to your ear drums if it’s loud enough and you could start to lose your hearing. So if your family were to tell you to turn it down, you should probably just turn it down!

5 0
3 years ago
How to find i1, i2,i3
MrRissso [65]

to find i1, i2, and i3 we need to find the total current.

to find the total current, you need to find the total resistance

you're already given the total voltage, Vs

to find Rtotal, start from the resistors furthest from the voltage source.

R3 and R4 are in series so

Rtotal= R3+R4 = 6+3 = 9 ohms

9 ohms is now in parallel with R2 so,

Rtotal= (\frac{1}{R3+R4}) ^{-1}\\ + (\frac{1}{R2}) ^{-1})^-1= (1/18)^-1 +( 1/9)^-1 = 6 ohms

6 ohms is in series with R1 so

Rtotal=  4+6=10 ohms

itotal= (\frac{Vtotal}{Rtotal})

= 120 v/10 ohms = 12 A

i total = i1 because all the current flows through it

i1= 12A

so the current splits into i2 and i3 and the amount of current that flows through a branch depends on the total resistance in each branch.

we already calculated the resistance in the R3+R4 & R2 branch as 6 ohms

since r3 and r4 are in series, the same current will flow through them

r3+r4 = 9 ohms

r2= 18 ohms

so the current in r2 will be half that of R3 & R4 (V=IR)

using the current divider rule

Ix = Itotal * \frac{Rtotal}{Rx}

i2= 12A x (6 ohms/18 ohms)= 4 A

i3= 12A x (6 ohms/9 ohms) = 8 ohms

6 0
3 years ago
A 1.50x103-kilogram car is traveling east at 30 meters per second.
frez [133]

Answer:

39000\ \text{kg m/s}

West

Explanation:

m = Mass of car = 1.3\times 10^{3}\ \text{kg}

t = Time = 9 seconds

u = Initial velocity = 30 m/s

v = Final velocity = 0

Impulse is given by

J=m(v-u)\\\Rightarrow J=1.3\times 10^3(0-30)\\\Rightarrow J=-39000\ \text{kg m/s}

The magnitude of the total impulse applied to the car to bring it to rest is 39000\ \text{kg m/s}.

The direction is towards west as the sign is negative.

7 0
3 years ago
What color of light must blue light mix with to create white light?
schepotkina [342]
<h2>Answer: a. Yellow </h2>

According to the additive theory of color, when we join the <u>three primary colors of light</u> (Red + Green + Blue) we get White light.

On the other hand we have <u>secondary colors of ligh</u>t that are:

Yellow = Red + Green

Magenta = Blue + Red

Cyan = Blue + Green

Now, if we know that:

Red + Green + Blue = White

And:

Red + Green = Yellow

Then:

<h2>Yellow + Blue = White</h2>
5 0
3 years ago
~~~NEED HELP ASAP~~~<br>Please solve each section and show all work for each section.
anastassius [24]

Explanation:

<u>Forces</u><u> </u><u>on</u><u> </u><u>Block</u><u> </u><u>A</u><u>:</u>

Let the x-axis be (+) towards the right and y-axis be (+) in the upward direction. We can write the net forces on mass m_A as

x:\:\:(F_{net})_x = f_N - T = -m_Aa\:\:\:\:\:\:\:(1)

y:\:\:(F_{net})_y = N - m_Ag = 0 \:\:\:\:\:\:\:\:\:(2)

Substituting (2) into (1), we get

\mu_km_Ag - T = -m_Aa \:\:\:\:\:\:\:\:\:(3)

where f_N= \mu_kN, the frictional force on m_A. Set this aside for now and let's look at the forces on m_B

<u>Forces</u><u> </u><u>on</u><u> </u><u>Block</u><u> </u><u>B</u><u>:</u>

Let the x-axis be (+) up along the inclined plane. We can write the forces on m_B as

x:\:\:(F_{net})_x = T - m_B\sin30= -m_Ba\:\:\:\:\:\:\:(4)

y:\:\:(F_{net})_y = N - m_Bg\cos30 = 0 \:\:\:\:\:\:\:\:\:(5)

From (5), we can solve for <em>N</em> as

N = m_B\cos30 \:\:\:\:\:\:\:\:\:(6)

Set (6) aside for now. We will use this expression later. From (3), we can see that the tension<em> </em><em>T</em><em> </em> is given by

T = m_A( \mu_kg + a)\:\:\:\:\:\:\:\:\:(7)

Substituting (7) into (4) we get

m_A(\mu_kg + a) - m_Bg\sin 30 = -m_Ba

Collecting similar terms together, we get

(m_A + m_B)a = m_Bg\sin30 - \mu_km_Ag

or

a = \left[ \dfrac{m_B\sin30 - \mu_km_A}{(m_A + m_B)} \right]g\:\:\:\:\:\:\:\:\:(8)

Putting in the numbers, we find that a = 1.4\:\text{m/s}. To find the tension <em>T</em>, put the value for the acceleration into (7) and we'll get T = 21.3\:\text{N}. To find the force exerted by the inclined plane on block B, put the numbers into (6) and you'll get N = 50.9\:\text{N}

8 0
3 years ago
Other questions:
  • Five hundred joules of heat are added to a closed system. The initial internal energy of the system is 87 J, and the final inter
    5·2 answers
  • An object has a kinetic energy of 268 j and a momentum of magnitude 22.4 kg·m/s. find the speed and the mass of the object.
    14·1 answer
  • When do both hemispheres receive the same amount of the sun's energy?
    9·1 answer
  • The formula d = t² + 5 t expresses a car's distance (in feet) from a stop sign, d, in terms of the number of seconds t since it
    10·1 answer
  • As ocean waves approach shore, their velocity decreases. How does a decrease in velocity affect the frequency and wavelength of
    13·2 answers
  • What does it depend on
    11·1 answer
  • 3. solve the following with regard to significant figures<br> a) 5.8 + 0.125<br> II) 3.9x105-2.5x104
    10·1 answer
  • What happens when a dog sleep do they have dreams to ?
    11·1 answer
  • Anyone who guesses what this means gets brainliest answer!!
    15·2 answers
  • A police car is moving to the left at 34m/sec while its siren is emitting a 600Hz tone. What tone would you hear if you were par
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!